Introduction Acidification of blood entering the membrane lung (ML) converts bicarbonate ions into dissolved gaseous CO2, increasing the pCO2 transmembrane gradient and thus the extracorporeal carbon dioxide removal (ECCO2R) [1]. Extracorporeal blood acidification has previously been achieved by infusion of lactic acid, which proved to be effective in rising ECCO2R but determined a mild increase of total CO2production and induced a slight degree of metabolic acidosis [2], thus limiting the overall effectiveness of such treatment. Objectives The aim of this study is to evaluate in-vitro the efficiency of an ECCO2R technique enhanced by an innovative acidification system featuring an electrodialysis unit, which does not require the infusion of any exogenous acid. Methods The circuit used for this experiment included a bloodcircuit, including a dialyzer, and a dialysiscircuit, a closed loop circuit featuring an electrodialysis (ED) cell and an adult polypropylene membrane lung (Quadrox-i, Maquet). An aqueous polyelectrolyte carbonated solution (CB 32, Novaselect, pH 7.33 ± 0.02, HCO3- 32 mmol/l) was used as a substitute for blood and flowed into the hemofilter at 250 ml/min. The ED unit is able to transfer electrolytes across a semipermeable membrane proportionally to the applied amperage. The ED cell was therefore used to increase chloride concentrations in the dialysate, thus reducing pH before the membrane lung without infusing of any exogenous compound. Five different amperages (0, 2, 4, 6 and 8 Amp) were tested. At the end of each step samples were withdrawn from blood and dialysiscircuit, and CO2 removal (VCO2) was measured. Results The application of ED technique determined an increase in chloride concentration before the ML up to 7.1 ± 1 mEq/L (at 8 Amp) and a consequent reduction in pH from 7.48 ± 0.01 to 6.5 ± 0.04. This resulted in a significant raise of CO2extraction, up to a VCO2increase of 237% at 8 Amp, (see Figure 1). Conclusions The tested prototype ECCO2R device, enhanced by an electrodialysis unit, proved to be effective in increasing carbon dioxide removal, proportionally to the applied amperage. Future experimental studies are required to evaluate in-vivo this innovative technique.

Zanella, A., Ferlicca, D., Abd El Aziz El Sayed Deab, S., Colombo, S., Spina, S., Sosio, S., et al. (2015). An innovative technique for extracorporeal carbon dioxide removal featuring an electrodialysis unit: An in-vitro experiment. INTENSIVE CARE MEDICINE EXPERIMENTAL, 3 [10.1186/2197-425X-3-S1-A501].

An innovative technique for extracorporeal carbon dioxide removal featuring an electrodialysis unit: An in-vitro experiment

Ferlicca D.;Abd El Aziz El Sayed Deab S.;Sosio S.;Introna M.;Ceriani D.;Salerno D.;
2015

Abstract

Introduction Acidification of blood entering the membrane lung (ML) converts bicarbonate ions into dissolved gaseous CO2, increasing the pCO2 transmembrane gradient and thus the extracorporeal carbon dioxide removal (ECCO2R) [1]. Extracorporeal blood acidification has previously been achieved by infusion of lactic acid, which proved to be effective in rising ECCO2R but determined a mild increase of total CO2production and induced a slight degree of metabolic acidosis [2], thus limiting the overall effectiveness of such treatment. Objectives The aim of this study is to evaluate in-vitro the efficiency of an ECCO2R technique enhanced by an innovative acidification system featuring an electrodialysis unit, which does not require the infusion of any exogenous acid. Methods The circuit used for this experiment included a bloodcircuit, including a dialyzer, and a dialysiscircuit, a closed loop circuit featuring an electrodialysis (ED) cell and an adult polypropylene membrane lung (Quadrox-i, Maquet). An aqueous polyelectrolyte carbonated solution (CB 32, Novaselect, pH 7.33 ± 0.02, HCO3- 32 mmol/l) was used as a substitute for blood and flowed into the hemofilter at 250 ml/min. The ED unit is able to transfer electrolytes across a semipermeable membrane proportionally to the applied amperage. The ED cell was therefore used to increase chloride concentrations in the dialysate, thus reducing pH before the membrane lung without infusing of any exogenous compound. Five different amperages (0, 2, 4, 6 and 8 Amp) were tested. At the end of each step samples were withdrawn from blood and dialysiscircuit, and CO2 removal (VCO2) was measured. Results The application of ED technique determined an increase in chloride concentration before the ML up to 7.1 ± 1 mEq/L (at 8 Amp) and a consequent reduction in pH from 7.48 ± 0.01 to 6.5 ± 0.04. This resulted in a significant raise of CO2extraction, up to a VCO2increase of 237% at 8 Amp, (see Figure 1). Conclusions The tested prototype ECCO2R device, enhanced by an electrodialysis unit, proved to be effective in increasing carbon dioxide removal, proportionally to the applied amperage. Future experimental studies are required to evaluate in-vivo this innovative technique.
Articolo in rivista - Articolo scientifico
Respiratory system, ECMO, Carbon dioxide removal
English
2015
3
A501
open
Zanella, A., Ferlicca, D., Abd El Aziz El Sayed Deab, S., Colombo, S., Spina, S., Sosio, S., et al. (2015). An innovative technique for extracorporeal carbon dioxide removal featuring an electrodialysis unit: An in-vitro experiment. INTENSIVE CARE MEDICINE EXPERIMENTAL, 3 [10.1186/2197-425X-3-S1-A501].
File in questo prodotto:
File Dimensione Formato  
Zanella et al-2015-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 264.01 kB
Formato Adobe PDF
264.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/577302
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
Social impact