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Abstract

The present dissertation consists of three parts.
In the first part we study unique continuation principles and the asymptotic behaviour of

weak solutions to some elliptic problems. Our approach is based on the combination of an
Almgren-type monotonicity formula with a blow-up analysis. Pohozaev-type identities play
a key role in the derivation of Almgren’s monotonicity formulas and can be challenging to
derive when the solution lacks regularity. Then we also present a regularity result in weighted
Sobolev spaces and a Pohozaev identity obtained as an application.

More precisely, in Chapter 2 we derive local asymptotics of solutions to second order
elliptic equations at the edge of a (N − 1)-dimensional crack, with homogeneous Neumann
boundary conditions prescribed on both sides of the crack. We provide a complete classi-
fication of all possible asymptotic degrees of homogeneities of solutions at the crack’s tip,
together with a strong unique continuation principle.

In Chapter 3 we recall some useful results about weighted Sobolev spaces which are used
throughout the present dissertation. Furthermore, we prove Sobolev-type regularity results
for solutions to a class of second order elliptic equations with a singular or degenerate weight,
under non-homogeneous Neumann conditions. As an application, we derive a Pohozaev-type
identity.

In Chapter 4 we investigate unique continuation properties and asymptotic behaviour at
boundary points for solutions to a class of elliptic equations involving the spectral fractional
Laplacian. An extension procedure leads us to study a degenerate or singular equation on
a cylinder, with a homogeneous Dirichlet boundary condition on the lateral surface and a
non homogeneous Neumann condition on the basis. For the extended problem, we classify
the local asymptotic profiles at the edge where the transition between boundary conditions
occurs. Passing to traces, an analogous blow-up result and its consequent strong unique
continuation property are deduced for the non-local fractional equation.

In Chapter 5 strong unique continuation properties and a classification of the asymptotic
profiles are established for spectral fractional powers of a Schrödinger operator with a Hardy-
type potential singular at 0. Similarly to Chapter 4, we make use of an extension procedure
and classify the local behaviour for the extended problem, which turns out to depend on the
coefficient of the singular potential.

In the second part of the present dissertation, we investigate unique continuation principles
and the asymptotic behaviour of weak solutions to a class of parabolic equations. More
precisely, in Chapter 6 we obtain a classification of local asymptotic profiles and strong unique
continuation properties for a class of fractional heat equations with a Hardy-type potential.
Similarly to the elliptic case, we make use of an extension procedure to localize the problem.

In the third part of the present dissertation, we study the asymptotic behaviour of simple
eigenvalues of Aharonov-Bohm operators with half integer circulation on a simple connected
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bounded domain Ω ⊂ R2 with Dirichlet boundary conditions as many poles coalesce to a fixed
point. More precisely, in Chapter 7, we make use of a gauge transformation to reformulate the
problem as an eigenvalue problem for the Laplacian in a domain with straight cracks, laying
along the moving directions of poles. For this problem, we obtain an asymptotic expansion
for eigenvalues, in which the dominant term is related to the minimum of an energy functional
associated with the configuration of poles and defined on a space of functions suitably jumping
through the cracks. Concerning configurations with an odd number of poles, an accurate
blow-up analysis identifies the exact asymptotic behaviour of eigenvalues and the sign of the
variation in some cases. An application to the special case of two poles is also discussed.
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Chapter 1

Introduction

The present dissertation deals with two subjects. The first one is strong unique continuation
and classification of local behaviour of solutions to some elliptic and parabolic equations. We
recall that a family of functions F = {fi}i∈I , with fi : A → R, A ⊆ RN , satisfies the strong
unique continuation property if no function in F , besides possibly the trivial null function,
has a zero of infinite order at any point x0 ∈ A. We study unique continuation properties
for several classes of problems, also involving fractional operators, by monotonicity approach.
The proof of monotonicity formulas in a fractional setting rises delicate regularity issues;
these require the development of ad-hoc Sobolev-type regularity results, which happen to be
of independent interest.

The second subject treated in this thesis is spectral stability for Aharonov-Bohm operators,
on a simple connected bounded domain Ω ⊂ R2, with Dirichlet boundary condition. We
focus on the case of half-integer-circulation, which is of particular interest from a physical
and mathematical point of view. More precisely, we consider operators with many poles
coalescing to a fixed point and study the sharp asymptotic behaviour of eigenvalues.

In this introduction we give a brief and not exhaustive overview of the vast literature on
this two subjects and outline our results and methods.

1.0.1 Part I: Unique continuation for elliptic problems

In the first part of this dissertation we study unique continuation for some elliptic equations.
The first result about strong unique continuation for second order problems was obtained
by Carleman in [38] for bounded potentials in dimension 2, by means of weighted a priori
inequalities. The so-called Carleman estimates are still today one of the main techniques used
in this research field. They have been adapted by many authors to generalize Carleman’s
results and prove unique continuation for more general classes of elliptic equations. Among
the numerous contributions in this area we mention [16, 88, 122, 133] and in particular [92],
where strong unique continuation is established under sharp scale invariant assumptions on
the potentials. Garofalo and Lin developed in [79] an alternative approach to the study of
unique continuation, based on local doubling inequalities, which are in turn deduced by the
monotonicity of an Almgren-type frequency function, see [14]. In the present dissertation we
follow this latter approach.

For some fixed x0 ∈ RN , the Almgren frequency function N , associated to the solution u
of some problem, can be defined as the ratio between a local energy D and a local mass or
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height H around x0. For example, for the model problem

−∆u = hu

and x0 = 0, the energy and height functions are defined as

D(r) := 1
rN−2

∫
Br

(|∇u|2 − hu2) dx and H(r) := 1
rN−1

∫
∂Br

u2 dS,

respectively, while the frequency function N is given by

N (r) := D(r)
H(r) .

For any r > 0, we are denoting with Br the set

Br := {x ∈ RN : |x| < r}. (1.1)

The notion of frequency introduced above has been adapted to several classes of elliptic
problems, see [65, 67, 68] for equations with singular potentials and [63] for domains with
corners, to prove not only unique continuation, but also, in combination with a blow-up
analysis, a classification of possible asymptotic profiles of solutions.

In Chapter 2 we establish a strong unique continuation principle and analyse the asymp-
totic behaviour of solutions, from the edge of a flat crack Γ, for the following elliptic problem
with homogeneous Neumann boundary conditions on both sides of the crack

−∆u = fu, in BR \ Γ,
∂+u

∂ν+ = ∂−u

∂ν− = 0, on Γ,
(1.2)

where BR ⊂ RN is as in (1.1), N ≥ 2, Γ is a closed subset of RN−1 × {0} with C1,1-boundary,
and the potential f is a measurable function satisfying suitable regularity or growth conditions
(see (2.6) and (2.7)). The boundary operators ∂+

∂ν+ and ∂−

∂ν− in (1.2) are defined as

∂+u

∂ν+ := − ∂

∂xN

(
u
∣∣
B+

R

)
and ∂−u

∂ν− := ∂

∂xN

(
u
∣∣
B−

R

)
,

where we are denoting, for all r > 0,

B+
r := {(x′, xN−1, xN ) ∈ Br : xN > 0}, B−

r := {(x′, xN−1, xN ) ∈ Br : xN < 0},

being the total variable x ∈ RN written as x = (x′, xN−1, xN ) ∈ RN−2 × R × R.
The interest in elliptic problems in domains with cracks is motivated by elasticity theory,

see e.g. [90, 43]. In particular, in crack problems, the coefficients of the asymptotic expansion
of solutions near the crack’s tip are related to the so called stress intensity factor, see [43].
We refer to [40, 41, 52] and references therein for the study of the behaviour of solutions at
the edge of a cut.

The derivation of a monotonicity formula around a boundary point presents some addi-
tional difficulties with respect to the interior case, due to the role that the regularity and the
geometry of the domain may play.
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Among papers dealing with unique continuation from the boundary under homogeneous
Dirichlet conditions we cite [12, 13, 63, 94, 130]. Instead, for Neumann problems, we refer
to [12] and [126] for the homogeneous case and to [49] for unique continuation from the
vertex of a cone under non-homogeneous Neumann conditions. We also mention that unique
continuation from Dirichlet-Neumann junctions for planar mixed boundary value problems
was established in [61].

In order to estimate the derivative of the Almgren frequency function, see Proposition
2.3.10, a Pohozaev type identity is needed. However, the high non-smoothness of the domain
BR \ Γ at points on the edge of the crack causes two kinds of difficulties in its proof. A first
difficulty is a lack of regularity that can prevent us from integrating Rellich-Nec̆as identities
of type (2.67). A second issue is related to the interference with the geometry of the crack,
which manifests in the form of extra terms, produced by integration by parts, which could be
problematic to estimate.

In [45], where homogeneous Dirichlet conditions on the crack are considered, this latter
difficulty is overcome by assuming a local star-shapedness condition for the cracked domain.
This geometric assumption forces the extra terms, produced by integration by parts, to have
a sign favourable to the desired estimates. The problem produced by lack of regularity is
instead solved in [45] by approximating Br \Γ with a sequence of smooth domains Ωn,r ⊂ Br.
The solutions un of approximating problems in Ωn,r converge in H1(Br) to the solution of the
original cracked problem for r ∈ (0, R) small enough. Each function un is sufficiently regular
to satisfy a Pohozaev type identity, in which it is possible to pass to the limit as n → ∞.
In this way it is possible to establish the inequality needed to estimate the derivative of the
Almgren frequency function.

In Chapter 2 we use a similar approximation technique, which however entails additional
difficulties and requires substantial modifications due to the Neumann boundary conditions.
In particular, the existence of an extension operator for Sobolev functions on Ωn, uniform
with respect to n, is obvious under Dirichlet boundary conditions but it turns out to be more
delicate in the Neumann case, see Proposition 2.2.11. Furthermore, the different boundary
conditions produce remainder terms with different signs, requiring a modified profile for the
approximating domains, see Section 2.2.3.

Unlike [45], we do not require any geometric star-shapedness condition on the crack Γ,
limiting ourselves to a C1,1-regularity assumption, see (2.4) below. The removal of the star-
shapedness condition assumed in [45] requires a more sophisticated monotonicity formula,
which is developed for the auxiliary problem (2.23), obtained after straightening the crack
Γ with a diffeomorphism introduced in [12], see Section 2.2.1. We mention that the same
diffeomorphism is used for fractional elliptic equations, with a similar purpose, in [47]. The
effect of this transformation straightening the crack is the appearance of a variable coefficient
matrix in the divergence-form elliptic operator. As a consequence, an adaption of the defini-
tion of the energy D and the height H is needed, see (2.58) and (2.59). Chapter 2 is based
on the paper [76].

In Chapter 3 we develop a Sobolev-type regularity theory in some weighted Sobolev spaces
which, besides being of independent interest, is a key ingredient to prove a Pohozaev-type
identity and a monotonicity formula in a fractional setting, see Chapters 4 and 5. More
precisely, we deal with the following class of second order elliptic equations

− div(y1−2sA(x, y)∇U(x, y)) + y1−2sc(x, y) = 0, x ∈ RN , y ∈ (0,+∞), (1.3)

with the weight y1−2s (being s ∈ (0, 1)) which belongs to the second Muckenhoupt class and
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is singular if s > 1/2 and degenerate if s < 1/2; we couple (1.3) with non-homogeneous
Neumann conditions

lim
y→0+

y1−2sA(x, y)∇U(x, y) · ν = hU(x, 0) + g(x) (1.4)

on the bottom of a half (N + 1)-dimensional ball.
The interest in such a type of equations and related regularity issues has developed start-

ing from the pioneering paper [58], proving local Hölder continuity results and Harnack’s
inequalities, and has grown significantly in recent years stimulated by the study of the frac-
tional Laplacian in its realization as a Dirichlet-to-Neumann map [35].

In this context, among recent regularity results for problems of type (1.3)–(1.4), we men-
tion [33] and [89] for Schauder and gradient estimates with A being the identity matrix and
c ≡ 0. More general degenerate/singular equations of type (1.3), admitting a varying coeffi-
cient matrix A, are considered in [120, 121]. In [120], under suitable regularity assumptions
on A and c, Hölder continuity and C1,α-regularity are established for solutions to (1.3)–(1.4)
in the case h ≡ g ≡ 0, which, up to a reflection through the hyperspace y = 0, corresponds
to the study of solutions to the equation − div(|y|1−2sA∇U) + |y|1−2sc = 0 which are even
with respect to the y-variable; Hölder continuity of solutions which are odd in y is instead
investigated in [121]. In addition, in [120] C0,α and C1,α bounds are derived for some inho-
mogeneous Neumann boundary problems (i.e. for g ̸≡ 0) in the case c ≡ 0. We also mention
[51, 50] for regularity results in weighted Sobolev spaces and mixed-norm weighted Sobolev
spaces for a class of singular or degenerate parabolic and elliptic equations in the upper half
space.

Our goal in Chapter 3 is to derive Sobolev-type regularity results for solutions to (1.3)–
(1.4). Under suitable assumptions on c, h, g, the presence of the singular/degenerate homoge-
nous weight, involving only the (N + 1)-th variable y, makes the solutions to have derivates
with respect to the first N variables x1, x2, . . . , xN belonging to a weighted H1-space (with
the same weight y1−2s); concerning the regularity of the derivative with respect to y, we ob-
tain instead that the weighted derivative y1−2s ∂U

∂y belongs to a H1-space with the dual weight
y2s−1, confirming what has already been observed in [120, Lemma 7.1] for even solutions of
the reflected problem corresponding to (1.3)–(1.4) with h ≡ g ≡ 0.

Our motivation for studying this question lies in the search for the minimal regularity
needed to prove Pohozaev-type identities for solutions of the extended problem, resulting
from the Caffarelli-Silvestre extension for the fractional Laplacian; Pohozaev-type identities
can in turn be used to obtain Almgren-type monotonicity formulas in the spirit of [60]. Indeed,
the Sobolev-type regularity results obtained in Theorem 3.2.1 allow us to directly obtain a
Pohozaev-type identity (Proposition 3.2.3), without requiring C1-regularity for the potential
h as in [60] and without approximating potentials in Sobolev spaces with smooth ones as
done in [47]. Furthermore, the presence of the matrix A makes our results applicable even
to the problem modified by a diffeomorphic deformation of the domain, which straightens
a C1,1-boundary and produces the appearance of a variable coefficient matrix A, satisfying
suitable regularity conditions (see (3.14), (3.15), and (3.16)); such a procedure is useful to
study the behaviour of solutions at the boundary, see e.g. [47].

For a precise statement of our regularity result and the Pohozaev-type identity see The-
orem 3.2.1 and Proposition 3.2.3. The proof of Theorem 3.2.1 is based on the classical
Nirenberg difference quotient method, see [107]. Chapter 3 is based on the paper [75].
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In Chapter 4 we prove the strong unique continuation property and derive local asymp-
totics from a point x0 ∈ ∂Ω for the solutions to the following equation

(−∆)su = hu on Ω,

where s ∈ (0, 1), Ω ⊆ RN is a bounded Lipschitz domain whose boundary is C1,1 in a
neighbourhood of x0, N > 2s, h is a measurable function on Ω satisfying suitable summability
properties, see (4.8), and (−∆)s is the so-called spectral fractional Laplacian.

Several results are available in the literature about the spectral fractional Laplacian and
its interpretations. See [9], [102], and references therein for a detailed overview. We mention
that regularity properties for stationary equations are discussed in [82], while existence and
uniqueness results for evolution equations governed by the spectral fractional Laplacian are
established in [26]. More closely related to our topic of investigation are the results in [135],
where a strong unique continuation principle at nodal points is proved for fractional powers of
some divergence-type elliptic operators, including the case of the spectral fractional Laplacian.
The techniques used in [135] are inspired by those introduced in [60], which are based on a
combination of a monotonicity formula for an Almgren-type frequency function and a blow-up
analysis. This local approach is made possible by the extension results by [125, Theorem 1.1]
and [35, Theorem 2.5].

As already observed, since the point x0 from which the unique continuation is sought after
lies on ∂Ω, the geometry of ∂Ω can interfere with the monotonicity argument. In Chapter 4
we face this difficulty by straightening the boundary with a local diffeomorphism in the same
spirt of Chapter 2. This transformation transfers the information about the geometry of ∂Ω
into a coefficient matrix in the operator, which turns out to be a perturbation of the identity if
the boundary is regular enough, see Section 4.3. Secondly, we make use of the Pohozaev type
identity obtained in Proposition 3.2.3 to differentiate the frequency function and to develop
the monotonicity argument. Furthermore, a blow-up analysis provides a detailed description
of the asymptotic behaviour of solutions to (4.1) at x0, giving a complete classification of
the order of homogeneity of asymptotic profiles, see Theorem 4.1.2 below. For this purpose,
an important role is played by an eigenvalue problem on a half-sphere under a symmetry
condition, see (4.19).

The extension problem corresponding to (4.1) consists of a degenerate or singular equation
on the cylinder Ω × (0,+∞); a homogeneous Dirichlet boundary condition is imposed on the
lateral surface ∂Ω × (0,+∞) and a weighted Neumann-type derivative on the basis Ω × {0}
is equal to the right hand side of (4.1), see (4.17). Therefore, the formulation of the problem
in terms of the extension leads us to study what happens near a point of the edge, at which
a transition between boundary conditions of a different type takes place. We observe that
this situation is quite different from the one that occurs in [47], where unique continuation
from boundary points is studied for the restricted fractional Laplacian; indeed, the extension
problem corresponding to the case treated in [47] is a degenerate or singular problem with
mixed conditions that vary on a flat basis rather than on an edge. In fact, the analysis
carried out in Chapter 4 highlights different asymptotic behaviours at the boundary for the
two operators, unlike what happens at internal points, where the locally equivalent form of
the extended problems induces the same blow-up profiles. Chapter 4 is based on the paper
[46].

In Chapter 5 we deal with fractional powers of the operator

Lα,ku := −∆u− α

|x|2k
u
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on a connected bounded Lipschitz domain Ω ⊂ RN with N ≥ 3 and 0 ∈ Ω, where

|x|2k =
k∑

i=1
x2

i and α ∈
(

−∞,

(
k − 2

2

)2)

for any k ∈ {3, . . . , N}. If k = N we simply write |x| for |x|N .
The operator Lα,k is an elliptic operator which is singular on a N − k-dimensional set.

In view of Hardy-Maz’ja-type inequalities, see Section 5.1, the operator Lα,k has a discrete
spectrum on H1

0 (Ω). Hence the fractional powers Ls
α,k of Lα,k with s ∈ (0, 1) can be defined

in a spectral sense, see for example [125]. In the particular case α = 0 the operator Ls
α,k

reduces to the spectral fractional Laplacian (−∆)s consider in Chapter 4.
We give a more precise definition of Ls

α,k in Section 5.1. To the best of our knowledge,
the operator Ls

α,k has not been considered before in the literature with α ̸= 0 in a bounded
domain. In the whole space RN the fractional powers of Lα,N have already been defined by
means of spectral theory, see [78]. In [78], generalised and reversed Hardy types inequalities
have been obtained for Ls

α,N , using semigroup theory and estimates on the corresponding
heat kernel.

We establish a unique continuation principle from the singular point 0 and classify the
asymptotic profiles for solutions of linear equations involving the operator Ls

α,k. More pre-
cisely, we are interested in the equation

Ls
α,ku = gu in Ω

where the potential g is a measurable function satisfying some growth assumption near 0, see
(5.3). In particular, we prove that the asymptotic profile of u in 0 is a homogenous function.
We also characterize the possible orders of homogeneity of blow-up profiles, which have a
non-trivial dependence on the singular potential α|x|−2

k .
For the restricted fractional Laplacian with a Hardy-type potential, under similar assump-

tions on the potential g and with a non-linear term, a complete classification of the possible
asymptotic profiles and a unique continuation property from 0 have been obtained in [60].
The asymptotic behaviour of the spectral fractional Laplacian with a Hardy-type potential is
identical since the equivalent problem obtained with a Caffarelli-Silvestre extension procedure
is locally the same. The restricted fractional Laplacian with a Hardy-type potential has been
intensively studied in the literature, see for example [59, 25, 10, 62, 69] and the references
within.

If k = N , it is interesting to compare our results with [60], in particular as far as the
minimal order of homogeneity of the asymptotics profiles are concerned, see (5.23), Theorem
5.1.10 and [60, Proposition 2.3]. In our case, it is possible to compute it explicitly, while for
the restricted fractional Laplacian only a more implicit expression is available.

Similar results have been obtained in [68] in the classical case, that is s = 1, in the
much more general situation of multiple potentials, including cylindrical and multi-body ones,
and with the presence of a non-linear term. Furthermore, in [68] the authors also studied
regularity properties of the solutions by means of a Brezis-Kato argument and obtained
pointwise estimates.

Similarly to Chapter 4, in order to obtain an Almgren type monotonicity formula and
perform a blow-up analysis, we localize the problem with an extension result, see Theorem
5.1.7 and also [37, 35, 125]. We also need a Pohozaev type identity. The singularity of the
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Hardy type potential α|x|−2
k , the assumptions (5.3) on g and the singularity or degeneracy

of the Muckenhoupt weight y1−2s in the hyperplane Rn × {0} cause an eventual lack of
regularity for solutions to the extended problem. We overcome this difficulty by means of an
approximation procedure based on the Implicit Function Theorem and the Pohozaev identity
proved in Proposition 3.2.3. Chapter 5 is based on the paper [118].

1.0.2 Part II: Unique continuation for parabolic problems

In the second part of the present dissertation we deal with fractional parabolic equations.
There exists a large literature dealing with strong continuation properties in the local parabolic
setting. Similarly to the elliptic case, both Carleman estimates and monotonicity methods,
have been widely used starting form the pioneristic paper [113]. We mention [100] for unique
continuation for parabolic operators with L

N+1
2 time-independent coefficients and [115, 123]

for unique continuation on horizontal components, proved by Carleman weighted inequalities,
in the presence of time-dependent coefficients. The paper [39] contains not only a unique con-
tinuation result but also some local asymptotic analysis of solutions to parabolic inequalities
with bounded coefficients. We quote [53, 54, 55, 56, 77] for unique continuation results for
parabolic equations with time-dependent potentials by Carleman inequalities and monotonic-
ity methods. We also refer to [22] for unique continuation properties for the heat operator
with a Hardy potential established by Carleman estimates.

In Chapter 6 we deal with the following singular fractional evolution equation

(wt − ∆w)s = 1
κs

(
µ

|x|2s
w + gw

)
, in RN × (t0 − T, t0), (1.5)

where T > 0, and, letting Γ be the usual Γ-function,

s ∈ (0, 1), N > 2s, µ < κsΛN,s, κs := Γ(1 − s)
22s−1Γ(s) , ΛN,s := 22s

Γ2
(

N+2s
4

)
Γ2
(

N−2s
4

) .
The potential g is a measurable function satisfying some regularity and growth assumptions
see (6.4) and (6.37). We are interested in studying the asymptotic behaviour of solutions to
(1.5) at (x, t) = (0, t0) along the directions (λx, t0 − λ2t) as λ → 0+. Our main result is a
classification of possible limiting asymptotic rates and profiles in terms of the eigenfunctions
of a weighted Ornstein-Uhlenbeck operator. As a corollary, we obtain a strong space-like
unique continuation property from the point (0, t0).

In the literature one may find many definitions of the operator Hs(w) := (wt − ∆w)s in
(1.5), that is of the fractional power of the classical heat operator H(w) := wt − ∆w. We
refer to [19] and [125] for a presentation of the several ways to define Hs corresponding to
different functional settings. It is also worth mentioning that a pointwise formula for Hsu is
derived in [125]. In Section 6.1 we give a precise definition of Hs and of weak solutions to
(1.5) by the Fourier transform.

Our approach is based on an Almgren-Poon type monotonicity formula, see [113], com-
bined with a blow-up argument. We mention that monotonicity methods and blow-up analysis
are used in [72] to prove strong unique continuation and classification of blow-up profiles for
parabolic equations with a Hardy potential (corresponding to the case s = 1 in (1.5)); analo-
gous results are obtained in [73] for a class of parabolic equations with critical electromagnetic
potentials.
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To deal with the fractional case we introduce an Almgren-Poon frequency function for
an equivalent localized problem, constructed by the extension procedure developed in [21,
24, 110, 125], in the spirit of the one introduced by Caffarelli and Silvestre in [35] for the
fractional powers of the Laplacian. This leads us to deal with equation (6.10), which is a
local degenerate or singular parabolic problem in a one more dimension, see Section 6.1 for
the details.

In a fractional parabolic setting, an Almgren-Poon frequency formula is first established
in [125] in the absence of potentials, i.e. for g ≡ 0 and µ = 0. Subsequently, an Almgren-
Poon monotonicity approach is used in [21] to prove unique continuation properties for weak
solutions to (1.5) in the case µ = 0, that is without the Hardy singularity, and under C1 or
C2 regularity assumptions on the potential g, depending on the value of s. In [21] a crucial
role is played by a Hölder regularity theory for solutions to the extended problem, which
has, in addition to its independent interest, applications to the estimates needed to derive
an Almgren-Poon type monotonicity formula. We mention that a space-like strong unique
continuation property is established in [17] in the case µ = 0 via a conditional elliptic type
doubling property and blow-up analysis. The case µ = 0 is treated also in [19], where, under
similar regularity assumptions on the potential g, a fine analysis of the structure of the nodal
set and of possible blow-ups of solutions vanishing with a finite order is performed. The
approach of [19] is also based on an Almgren-Poon type monotonicity formula and makes use
of some uniform Hölder bounds, improving the regularity estimates of [21] and providing an
independent proof of the Hölder regularity of weak solutions.

Due to the presence of a Hardy-type potential, there is no hope to obtain similar regularity
results, since weak solutions to (1.5) may in general be not bounded, see Theorem 6.1.7.
In the spirit of [72], to overcome this difficulty we rely instead on the theory of abstract
parabolic equations, once a formulation of the extension problem in a suitable Gaussian
space is obtained. Furthermore we also obtain a classification of the asymptotic profiles of
weak solutions to (1.5) at (x, t) = (0, t0) along the directions (λx, t0 − λ2t) as λ → 0+, see
Theorem 6.1.7 and Theorem 6.1.6 in Section 6.1. Chapter 6 is based on the paper [74].

1.0.3 Part III: Spectral Stability for Aharonov-Bohm operators

In the third part of the present thesis we deal with quantitative spectral stability for Aharonov-
Bohm operators with many coalescing poles, half-integer circulation and homogeneous Dirich-
let boundary conditions on a simply connected open bounded domain Ω ⊂ R2.

More precisely, in Chapter 7 we consider the case of any number k of poles moving along
straight lines towards a collision point P ∈ Ω, with distances from P vanishing with the same
order. Without loss of generality, we assume that P = 0 ∈ Ω, so that the moving poles can be
written as multiples of k fixed points {aj}j=1,...,k with the same multiplicative infinitesimal
parameter ε > 0.

Since we are interested in the asymptotic behaviour of eigenvalues as ε → 0+, it is not
restrictive to assume that there exists R < 1 such that

{aj}j=1,...,k ⊂ BR(0) ⊂ Ω,

where, for every r > 0 and x ∈ R2, we denote Br(x) := {y ∈ R2 : |x − y| < r}. Henceforth,
we denote Br(0) simply by Br.
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We assume that, among the k poles, there are k1 poles that stand alone on their own
straight line through the origin, while the remaining ones form k2 pairs of poles staying on
the same straight line but on different sides with respect to the origin. Hence

k = k1 + 2k2 with k1, k2 ∈ N, (k1, k2) ̸= (0, 0),

and, for every j = 1, . . . , k, there exist rj > 0 and αj ∈ (−π, π] such that αj ̸= αℓ if j ̸= ℓ and

aj = rj(cos(αj), sin(αj)), (1.6)

where αj1 ̸= αj2 ± π if j1 ̸= j2 and j1, j2 ∈ {1, . . . , k1}, while αj ∈ (−π, 0] and αj+k2 = αj + π
for every j ∈ {k1 + 1, . . . , k1 +k2}. For the sake of simplicity, we treat in detail configurations
of the type described above, see 1.1; in Section 7.7 we explain how our methods and results
can be extended to more general configurations of poles.

a1

aj

aj+k2

ak1

a2

Figure 1.1: Configuration of poles (k1 + 1 ≤ j ≤ k1 + k2).

For every j = 1, . . . , k and ε ∈ (0, 1], we define

aj
ε := εaj .

For every b = (b1, b2) ∈ R2, the Aharonov-Bohm vector potential with pole b and circulation
ρ ∈ R is defined as

Aρ
b(x1, x2) := ρ

( −(x2 − b2)
(x1 − b1)2 + (x2 − b2)2 ,

x1 − b1
(x1 − b1)2 + (x2 − b2)2

)
, (x1, x2) ∈ R2 \ {b}.

In Chapter 7, we consider the case of half-integer circulations ρ ∈ 1
2 +Z, which is of particular

interest from the mathematical point of view due to applications to the problem of spectral
minimal partitions, see [27, 109]. For ρ = 1

2 we denote

Ab := A
1/2
b . (1.7)

We are interested in the multi-singular vector potential

A(n1,n2,...,nk)
ε :=

k∑
j=1

A
nj+ 1

2
aj

ε
=

k∑
j=1

(2nj + 1)A
aj

ε
,
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having at each pole aj
ε half-integer circulation nj + 1

2 with nj ∈ Z, and in the corresponding
eigenvalue problem 

(
i∇ + A(n1,n2,...,nk)

ε

)2
u = λu, in Ω,

u = 0, on ∂Ω,
(1.8)

where the magnetic Schrödinger operator
(
i∇ + A(n1,n2,...,nk)

ε
)2 acts as(

i∇ + A(n1,n2,...,nk)
ε

)2
u := −∆u+ 2iA(n1,n2,...,nk)

ε · ∇u+
∣∣A(n1,n2,...,nk)

ε

∣∣2u.
Since nj ∈ Z, A(n1,n2,...,nk)

ε is gauge equivalent to the vector potential

Aε :=
k∑

j=1
(−1)j+1A

aj
ε
.

Therefore the operators
(
i∇+A(n1,n2,...,nk)

ε
)2 and (i∇+Aε)2 are unitarily equivalent (see [96,

Theorem 1.2] and [97, Proposition 2.2]), and consequently the spectrum of (1.8) coincides
with that of {

(i∇ + Aε)2u = λu, in Ω,
u = 0, on ∂Ω.

(1.9)

Hence, to study the behaviour as ε → 0+ of the spectrum of (1.8), it is not restrictive to
consider problem (1.9). We refer to (7.2) for the variational formulation of (1.9). From
classical spectral theory, problem (1.9) has a diverging sequence of real positive eigenval-
ues {λε,n}n∈N\{0}; in the sequence {λε,n}n∈N\{0} we repeat each eigenvalue according to its
multiplicity. Moreover, the eigenspace associated to each eigenvalue has finite dimension.

As ε → 0+, the following limit eigenvalue problem comes into play:
(
i∇ + 1+(−1)k+1

2 A0
)2
u = λu, in Ω,

u = 0, on ∂Ω,
(1.10)

with A0 defined as in (1.7) with b = 0. If k is odd, the operator in (1.10) is the Aharonov-
Bohm operator with one pole in 0 and circulation 1

2 ; as above, the classical Spectral Theorem
applies and provides a diverging sequence of real positive eigenvalues {λ0,n}n∈N\{0} with finite
multiplicity. Furthermore, it is well-known that, in this case, eigenfunctions vanish in 0 with
order m

2 , for some odd m ∈ N, and have exactly m nodal lines meeting at 0 and dividing the
whole 2π-angle into m equal parts; see [66, Theorem 1.3, Section 7] and (7.55)–(7.56) for a
description of the asymptotic behaviour at 0 of eigenfunctions of (1.10).

If k is even the nature of the limit eigenvalue problem undergoes a significant mutation.
Indeed, for k even, the operator in (1.10) is the classical Dirichlet Laplacian and the eigenvalue
problem (1.10) can be rewritten as{

−∆u = λu, in Ω,
u = 0, on ∂Ω.

(1.11)

We conclude that, for every k ∈ N \ {0}, the spectrum of (1.10) is a diverging sequence
{λ0,n}n∈N\{0} of positive real eigenvalues.
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We recall from [97, Theorem 1.2] that, whatever the number k of poles is,

the function ε 7→ λε,n is continuous on [0, 1],

so that, in particular,
lim

ε→0+
λε,n = λ0,n (1.12)

for every n ∈ N \ {0}. In Chapter 7 we aim to give a sharp asymptotic expansion for the
variation λε,n − λ0,n of simple eigenvalues with respect to the moving configuration of poles.

In the case of one moving pole, [28] establishes a first relation between the rate of conver-
gence (1.12) and the number of the nodal lines of the corresponding eigenfunction. Sharper
asymptotic expansions for simple eigenvalues are obtained in [1], in the case of one pole mov-
ing along the tangent to a nodal line of the limit eigenfunction, and in [2], in the case of one
pole moving along any direction. The case of one pole approaching the boundary is treated
in [6] and [108]. The methods developed in [1], [6], and [108] are based on an Almgren type
frequency formula, which provides local energy bounds for eigenfunctions. These are used
to estimate the Rayleigh quotient, whose minimax levels characterize the eigenvalues, and to
prove the convergence of a family of blown-up eigenfunctions to some non trivial limit profile.
In particular, using the notation introduced above, in [1] it is proved that, for k = k1 = 1 and
a1

ε = εa1 = ε r1(cos(α1), sin(α1)) moving along the tangent to one of the m nodal lines of the
limit eigenfunction u0, if λ0,n is a simple, then

λε,n − λ0,n = 4 rm
1 (|β1|2 + |β2|2)M εm + o(εm) as ε → 0+. (1.13)

In (1.13) (β1, β2) ̸= (0, 0) is such that

lim
r→0+

r− m
2 u0(r cos t, r sin t) = β1e

i t
2 cos

(
m
2 t
)

+ β2e
i t

2 sin
(

m
2 t
)
,

see (7.55), and M < 0 is a negative constant depending only on m, which has the following
variational characterization:

M = min
{

1
2

∫
R2

+

|∇u(x)|2 dx− m

2

∫ 1

0
x

m
2 −1

1 u(x1, 0) dx1 : u ∈ D1,2
s (R2

+)
}
, (1.14)

where s := {(x1, x2) ∈ R2 : x2 = 0 and x1 ≥ 1}, R2
+ = {(x1, x2) ∈ R2 : x2 > 0)}, and

D1,2
s (R2

+) is the completion of C∞
c (R2

+ \ s) with respect to the norm (
∫
R2

+
|∇u|2 dx)1/2. For an

explicit formula for M we refer to [5, Theorem 2.3]. The quantity appearing in (1.14) can be
interpreted as a weighted torsional rigidity of the segment along which the pole is moving.
Concerning the classical notion of torsional rigidity of a set, the literature is vast; among
many others, we cite the classical books [112, 85] for the basic definitions and some possible
application in shape optimization and [131, 32, 30] for more recent investigations in the field.
We also point out [8], where a notion of thin torsional rigidity is exploited in the study of
spectral stability for some singularly perturbed problems.

In the case of one single pole, the study of Aharonov-Bohm eigenvalues benefits from
the known regularity of the eigenvalue as a function of the pole position. Indeed, in [97] it
is proved that, in the case of one moving pole, eigenvalues are analytic as functions of the
pole, so that the eigenvalue variation admits a Taylor expansion. The sharp asymptotics on
nodal lines (1.13) obtained in [1] is used in [2] to compute the leading term of such Taylor
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expansion, exploiting symmetry and periodicity properties of the Fourier coefficients of the
blow-up profile with respect to the moving direction. In the case of many poles, the analyticity
property is maintained as long as the poles are away from each other (see again [97]), but is
lost in the case of a collision; indeed in [4] (and in [3] for symmetric domains) it is proved that,
in the case of two poles colliding at a point outside the nodal set of the limit eigenfunction,
the eigenvalue variation is asymptotic to the logarithm of the distance.

From the above discussion it therefore emerges that the case of multiple colliding poles
presents additional significant difficulties. So far, up to our knowledge, in the literature only
the case of two coalescing poles has been addressed with the aim of deriving precise asymptotic
estimates in terms of the distance between the two poles. The paper [3] derives the asymptotic
behaviour of eigenvalues of Aharonov–Bohm operators with two colliding poles moving on an
axis of symmetry of the domain, which is assumed not to be tangent to any nodal line of the
limit eigenfunction. The argument used in [3] is based on isospectrality with the Dirichlet
Laplacian on the domain with a small segment removed, for which an asymptotic expansion
of the eigenvalue variation is obtained by a capacity argument, in the spirit of [42]. The
complementary case of two colliding poles, which move on an axis of symmetry coinciding
with a nodal line of the limit eigenfunction, is treated in [5], exploiting an isospectrality result
and a monotonicity formula in the spirit of [1]. The assumption of symmetry of the domain
is removed in [4], in the case of two poles collapsing at an interior point out of nodal lines of
the limit eigenfunction; this is possible thanks to an estimate of the diameter of the nodal set
of magnetic eigenfunctions close to the collision point.

In Chapter 7 we develop a new approach that provides asymptotic expansions of the
eigenvalue variation in the most general case of any number of poles moving towards a collision
point. We propose a method which combines the idea of torsional rigidity, naturally appearing
in [1] (see also [6, Theorem 2.2]) to variationally characterize the coefficient of the leading term
as in (1.14), with that of capacity, which [42] and [3] show to be the good small parameter in
a spectral perturbation theory in domains with small holes.

Let us assume that there exists n0 ∈ N \ {0} such that

λ0,n0 is a simple eigenvalue of (1.10). (1.15)

In view of (1.12), assumption (1.15) implies that also λε,n0 is simple as an eigenvalue of (1.9),
provided ε is sufficiently small. Simplicity of the spectrum is a generic property for many
differential operators. We refer e.g. to [129], where the author exhibits sufficient conditions for
genericity of simplicity of the spectrum for various families of differential operators (including
Aharonov-Bohm operators with a single pole). See also [7] for a focus on the particular case
of Aharonov-Bohm operators.

The first step in our approach is to perform some gauge transformation, making the mag-
netic eigenvalue problem (1.9), and its corresponding limit one (1.10), equivalent to eigenvalue
problems for the Laplacian in domains with straight cracks, laying along the moving direc-
tions of poles, see (7.10) and (7.14). Fixing a L2-normalized eigenfunction v0 of the equivalent
limit eigenvalue problem (7.14) associated to the eigenvalue λ0,n0 , we prove in Theorem 7.1.1
the following asymptotic expansion:

λε,n0 − λ0,n0 = 2
(
Eε − Lε(v0)

)
+ o

(
∥∇Vε∥2

L2(Ω)
)

as ε → 0+, (1.16)

where Lε is the linear functional defined in (7.16), Eε is the minimum of an energy functional
associated with the configuration of poles and defined on a space of functions suitably jumping
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through the cracks, see (7.19), and Vε is the potential attaining such a minimum. We observe
that Eε is a kind of intermediate quantity between torsional rigidity and capacity of the
set obtained as the union of the segments connecting the poles to the origin. Indeed, the
capacity of a set is defined by minimizing the L2-norm of the gradient among functions which
are prescribed on the set; the torsional rigidity, instead, is constructed by minimizing an
energy functional, which contains a linear term involving an integral on the set, without
prescribing any condition. In the definition of Eε given in (7.19), we minimize an energy
functional over a family of functions which are only partially prescribed on the cracks, in
the sense that we impose a jump condition on the functions across the segments, obtaining
a jump of the normal derivatives as a consequent natural condition. The development of
such an intermediate notion provides a unified approach, which does not require an a priori
relation between the configuration of poles and the orientation of the nodal set of the limit
eigenfunction. We mention that elliptic problems in cracked domains, with jumps of the
unknown function and its normal derivative prescribed on the cracks, are studied in [105].

For k odd, a blow-up analysis allows us to identify the exact asymptotic behaviour of
the quantities appearing in the right hand side of (1.16). In Theorem 7.1.2 we prove that
limε→0+ ε−mEε = E , where m is the vanishing order of v0 at 0 and E is the minimum of the
energy functional defined in (7.28) over a space of suitably jumping functions, see (7.31).
Thus we generalize (1.13) in the multipolar case, obtaining the following explicit expansion

λε,n0 − λ0,n0 = 2 εm(E − L(Ψ0)
)

+ o(εm) (1.17)

as ε → 0+, where L is the linear functional defined in (7.27) and Ψ0 is the m
2 -homogeneous

harmonic function introduced in (7.26). We note that the assumption that k is odd is crucial
in the blow-up analysis, since it guarantees the validity of the Hardy-type inequality proved
in Proposition 7.5.2, needed to characterize the functional space containing the limiting blow-
up profile. In the particular case of all poles moving either along the tangents to nodal
lines or along the bisectors between nodal lines of the limit eigenfunction, we can prove that
the quantity E − L(Ψ0), appearing as the coefficient of the leading term of the asymptotic
expansion (1.17), does not vanish, see Proposition 7.1.3; this shows that m is exactly the
vanishing order of the eigenvalue variation. On the other hand, the study of the continuity
properties of the coefficients appearing in (1.17), see Theorem 7.5.8, allows us to prove the
existence of configurations of poles for which E − L(Ψ0) = 0 and hence λε,n0 − λ0,n0 is an
infinitesimal of higher order than m.

If k is even, a Hardy type inequality is no more available, and therefore the blow-up
analysis meets the technical difficulty of identifying the limiting profile in an appropriate
functional space. In spite of that, in the case of two poles colliding in a point of the nodal set
of the limit eigenfunction and moving either along the tangents to its nodal lines or along its
bisectors, in Theorems 7.1.6 and 7.1.7 we are able to derive the exact asymptotic behaviour of
Eε −Lε(v0), and consequently of λε,n0 −λ0,n0 thanks to the use of elliptic coordinates; in this
way we generalize the results of [3] and [5], which require an axial symmetry of the domain
as a further hypothesis. Chapter 7 is based on the paper [70].

Finally, we mention that the case of arbitrary real circulations is the object of current
investigation, see [71].
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Part I

Unique continuation for elliptic
problems
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Chapter 2

Unique continuation from a crack’s
tip under Neumann boundary
conditions

2.1 Statements of the main results
In this chapter we establish strong unique continuation properties and classify the asymptotic
behaviour of solutions, from the edge of a flat crack Γ, for the problem

−∆u = fu, in BR \ Γ,
∂+u

∂ν+ = ∂−u

∂ν− = 0, on Γ,
(2.1)

where BR is as in (1.1), Γ is a closed subset of RN−1 × {0} with C1,1-boundary, and the
potential f satisfies either assumption (2.6) or assumption (2.7) below. We recall that the
boundary operators ∂+

∂ν+ and ∂−

∂ν− in (2.1) are defined as

∂+u

∂ν+ := − ∂

∂xN

(
u
∣∣
B+

R

)
and ∂−u

∂ν− := ∂

∂xN

(
u
∣∣
B−

R

)
,

where for all r > 0,

B+
r := {(x′, xN−1, xN ) ∈ Br : xN > 0}, B−

r := {(x′, xN−1, xN ) ∈ Br : xN < 0},

being the total variable x ∈ RN written as x = (x′, xN−1, xN ) ∈ RN−2 × R × R.
To state the main results of this chapter, we introduce now our assumptions on the crack

Γ and the potential f . We suppose that Γ is a closed set of the form

Γ := {(x1, 0) : x1 ∈ [0,+∞)} if N = 2 (2.2)

and
Γ := {(x′, xN−1, 0) ∈ RN : g(x′) ≤ xN−1} if N ≥ 3, (2.3)

where
g : RN−2 → R, g ∈ C1,1(RN−2), (2.4)
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and
g(0) = 0, ∇g(0) = 0. (2.5)

Assumption (2.5) is not restrictive, being a free consequence of an appropriate choice of the
Cartesian coordinate system. We are going to study the behaviour of solutions to (2.1) near
0, which belongs to the edge of the crack Γ defined in (2.2)–(2.3).

Furthermore we assume that f : BR → R is a measurable function for which there exists
ϵ ∈ (0, 1) such that either

f ∈ W 1, N
2 +ϵ(BR \ Γ), (2.6)

or
N ≥ 3 and |f(x)| ≤ c|x|−2+2ϵ for some c > 0 and for all x ∈ BR. (2.7)

For every closed set K ⊆ RN−1 ×{0} and r > 0, we define the functional space H1
0,∂Br

(Br \K)
as the closure in H1(Br \K) of the set

{v ∈ H1(Br \K) : v = 0 in a neighbourhood of ∂Br}.

A weak solution to (2.1) is a function u ∈ H1(BR \ Γ) such that∫
BR\Γ

(∇u · ∇ϕ− fuϕ) dy = 0,

for all ϕ ∈ H1
0,∂BR

(BR \ Γ).
The following unique continuation principle for solutions to (2.1) is our main result.

Theorem 2.1.1. Let u be a weak solution to (2.1) with Γ as in (2.2)–(2.3) and f satisfying
either (2.6) or (2.7). If u(x) = O(|x|k) as |x| → 0+ for all k ∈ N, then u ≡ 0 in BR.

In Theorem 2.4.8 we provide a classification of blow-up limits in terms of the eigenvalues
of the following problem 

−∆SN−1ψ = µψ, on SN−1 \ Σ,
∂+ψ

∂ν+ = ∂−ψ

∂ν− = 0, on Σ,
(2.8)

on the unit (N − 1)-dimensional sphere SN−1 := {x ∈ RN : |x| = 1} with a cut on the
half-equator

Σ := {(x′, xN−1, 0) ∈ SN−1 : xN−1 ≥ 0},
where, letting eN := (0, . . . , 1),

SN−1
+ :=

{
(x′, xN−1, xN ) ∈ SN−1 : xN > 0

}
, SN−1

− :=
{

(x′, xN−1, xN ) ∈ SN−1 : xN < 0
}
,

the boundary operators ∂±

∂ν± are defined as

∂+ψ

∂ν+ := −∇SN−1
+

(
ψ
∣∣
SN−1

+

)
· eN and ∂−ψ

∂ν− := ∇SN−1
−

(
ψ
∣∣
SN−1

−

)
· eN ,

see Section 2.4.1 for the weak formulation of (2.8). In Section 2.4.1 we prove that the set of
the eigenvalues of (2.8) is {µk : k ∈ N} where

µk = k(k + 2N − 4)
4 , k ∈ N.

As a consequence of the classification of blow-up limits, we obtain the following unique con-
tinuation result from the edge with respect to crack points.

16



Theorem 2.1.2. Let u be a weak solution to (2.1) with Γ as in (2.2)–(2.3) and f satisfying
either (2.6) or (2.7). Let us also assume that u vanishes at 0 at any order with respect to
crack points, namely that either Tr+

Γ u(z) = O(|z|k) as |z| → 0+, z ∈ Γ, for all k ∈ N or
Tr−

Γ u(z) = O(|z|k) as |z| → 0+, z ∈ Γ, for all k ∈ N, where Tr+
Γ u, respectively Tr−

Γ u, denotes
the trace of u

∣∣
B+

R
, respectively u

∣∣
B−

R
, on Γ. Then u ≡ 0 in BR.

If N ≥ 3, we can combine the blow-up analysis with an expansion in Fourier series with
respect to a orthonormal basis made of eigenfunctions of (2.8). This allows us to classify the
possible asymptotic homogeneity degrees of solutions at 0.
Theorem 2.1.3. Let N ≥ 3 and let u ∈ H1(BR \ Γ), u ̸≡ 0, be a non-trivial weak solution
to (2.1), with Γ defined in (2.2)–(2.3) and f satisfying either assumption (2.6) or assumption
(2.7). Then there exist k0 ∈ N and an eigenfunction Y of problem (2.8), associated to the
eigenvalue µk0, such that, letting

Φ(x) := |x|
k0
2 Y

(
x

|x|

)
,

we have that

λ− k0
2 u(λ·) → Φ and λ1− k0

2
(
∇BR\Γu

)
(λ·) → ∇RN \Γ̃Φ in L2(B1)

as λ → 0+, where
Γ̃ :=

{
x = (x′, xN−1, 0) ∈ RN : xN−1 ≥ 0

}
(2.9)

and ∇BR\Γ and ∇RN \Γ̃ denote the distributional gradients in BR \ Γ and RN \ Γ̃ respectively.
A more precise version of Theorem 2.1.3, relating k0 to the limit of a frequency function

and characterizing the eigenfunction Y , will be proved in Section 2.5, see Theorem 2.5.3.
Chapter 2 is organized as follows. In Section 2.2.1 an equivalent problem in a domain

with a straightened crack is constructed. Sections 2.2.2 contains some trace and embedding
inequalities for the space H1(Br \ Γ̃). Section 2.2.3 is devoted to the construction of the
approximating problems. In Section 2.3 we develop the monotonicity argument, which is first
used to prove Theorem 2.1.1 and later, in Section 2.4.2, to perform a blow-up analysis and
prove Theorem 2.1.2, taking into account the structure of the spherical eigenvalue problem
(2.8) studied in Section 2.4.1. Finally Theorem 2.1.3 is proved in Section 2.5.

2.2 An equivalent problem with straightened crack and ap-
proximation procedure

In this section we first introduce an equivalent problem with a straightened crack; then we
develop an approximation procedure regularizing the domain, for which suitable trace and
embedding inequalities are needed.

2.2.1 An equivalent problem with straightened crack

In this section we straighten the boundary of the crack in a neighbourhood of 0. If N ≥ 3
we use the local diffeomorphism F defined in [47, Section 2], see also [12]; for the sake of
clarity and completeness we summarize its properties in Propositions 2.2.1 and 2.2.2 below,
referring to [47, Section 2] for their proofs. If N = 2, the crack is a segment and we simply
take F = Id, where Id is the identity function on R2.
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Proposition 2.2.1. [47, Section 2] Let N ≥ 3 and Γ be defined in (2.3) with g satisfying
(2.4) and (2.5). There exist F = (F1, . . . , FN ) ∈ C1,1(RN ,RN ) and r1 > 0 such that F

∣∣
Br1

:
Br1 → F (Br1) is a diffeomorphism of class C1,1,

F (y′, 0, 0) = (y′, g(y′), 0) for any y′ ∈ RN−1, and F (Γ̃ ∩Br1) = Γ ∩ F (Br1),

with Γ̃ as in (2.9). Furthermore, letting y = (y′, yN−1, yN ) ∈ Br1 and JF (y) be the Jacobian
matrix of F at y

A(y) := | det JF (y)|(JF (y))−1((JF (y))−1)T , (2.10)
the following properties hold:

i) JF depends only on the variable y′′ = (y′, yN−1) and

JF (y) = JF (y′′) = IdN +O(|y′′|) as |y′′| → 0+,

where IdN denotes the identity N × N matrix and O(|y′′|) denotes a matrix with all
entries being O(|y′′|) as |y′′| → 0+;

ii) det JF (y) = detJF (y′, yN−1) = 1 +O(|y′|2) +O(yN−1) as |y′| → 0+ and yN−1 → 0;

iii) ∂Fi
∂yN

= ∂FN
∂yi

= 0 for any i = 1, . . . , N − 1 and ∂FN
∂yN

= 1;

iv) the matrix-valued function A can be written as

A(y) = A(y′, yN−1) =
(
D(y′, yN−1) 0

0 det JF (y′, yN−1)

)
, (2.11)

with

D(y′, yN−1) =
(

IdN−2 +O(|y′|2) +O(yN−1) O(yN−1)
O(yN−1) 1 +O(|y′|2) +O(yN−1)

)
, (2.12)

where IdN−2 denotes the identity (N − 2) × (N − 2) matrix and O(yN−1), respectively
O(|y′|2), denotes blocks of matrices with all entries being O(yN−1) as yN−1 → 0, respec-
tively O(|y′|2) as |y′| → 0.

v) A is symmetric with coefficients of class C0,1 and
1
2 |z|2 ≤ A(y)z · z ≤ 2|z|2 for all z ∈ RN and y ∈ Br1 . (2.13)

We note that (2.13) implies that ∥A(y)∥L(RN ,RN ) ≤ 2 for all y ∈ Br1 . We also observe

A = Id2 if N = 2. (2.14)

Moreover (2.11)– (2.12) easily imply that

A(y) = A(y′′) = IdN +O(|y′′|) as |y′′| → 0+. (2.15)

Under the same assumptions and with the same notation of Proposition 2.2.1, we define

µ(y) := A(y)y · y
|y|2

and β(y) := A(y)y
µ(y) for any y ∈ Br1 \ {0}. (2.16)
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Proposition 2.2.2. [47, Section 2] Under the same assumptions as Proposition 2.2.1, let µ
and β be as in (2.16). Then, possibly choosing r1 smaller from the beginning,

1
2 ≤ µ(y) ≤ 2 for any y ∈ Br1 \ {0}, (2.17)

µ(y) = 1 +O(|y|) as |y| → 0+, (2.18)
∇µ(y) = O(1) as |y| → 0+. (2.19)

Moreover β is well-defined and

β(y) = y +O(|y|2) = O(|y|) as |y| → 0+, (2.20)
Jβ(y) = A(y) +O(|y|) = IdN +O(|y|) as |y| → 0+,

div(β)(y) = N +O(|y|) as |y| → 0+. (2.21)

We also define dA(y)zz, for every z = (z1, . . . , zN ) ∈ RN and y ∈ Br1 , as the vector of RN

with i-th component, for i = 1, . . . , N , given by

(dA(y)zz)i =
N∑

h,k=1

∂akh

∂yi
zhzk, (2.22)

where we have defined the matrix A = (ak,h)k,h=1,...,N in (2.10).

Remark 2.2.3. For any measurable function f : F (Br1) → R we set

f̃ : Br1 → R, f̃ := | det JF | (f ◦ F ).

Then, in view of i) and ii) in Proposition 2.2.1, the function f̃ satisfies assumptions (2.6) or
(2.7) on Br1 if and only if f satisfies assumptions (2.6) or (2.7) on F (Br1).

It is easy to see that, if u is a solution to (2.1), then the function U := u ◦ F belongs to
H1(Br1 \ Γ̃) and is a weak solution of the problem− div(A∇U) = f̃u, in Br1 \ Γ̃,

A∇+U · ν+ = A∇−U · ν− = 0, on Γ̃,
(2.23)

where

∇+U = ∇
(
U
∣∣
B+

r1

)
, ∇−U = ∇

(
U
∣∣
B−

r1

)
, and ν− = −ν+ = (0, . . . , 1).

By saying that U is a weak solution to (2.23) we mean that U ∈ H1(Br1 \ Γ̃) and∫
Br1 \Γ̃

(A∇U · ∇ϕ− f̃Uϕ) dy = 0

for all ϕ ∈ H1
0,∂Br1

(Br1 \ Γ̃).
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2.2.2 Traces and embeddings results

In this section, we present some trace and embedding inequalities for the space H1(Br1 \ Γ̃)
which will be used throughout this Chapter.

We define the even reflection operators

R+(v)(y′, yN−1, yN ) = v(y′, yN−1, |yN |),
R−(v)(y′, yN−1, yN ) = v(y′, xN−1,−|yN |),

and observe that, for all r > 0, R+ : H1(Br \ Γ̃) → H1(Br) and R− : H1(Br \ Γ̃) → H1(Br).
We have that R+(v),R−(v) ∈ Lp(Br) for some p ∈ [1,∞) if and only if v ∈ Lp(Br); in such
a case we have that∥∥∥R+(v)

∥∥∥p

Lp(Br)
= 2 ∥v∥p

Lp(B+
r ) ,

∥∥R−(v)
∥∥p

Lp(Br) = 2 ∥v∥p

Lp(B−
r ) , (2.24)

and
∥v∥p

Lp(Br) = 1
2

(∥∥∥R+(v)
∥∥∥p

Lp(Br)
+
∥∥R−(v)

∥∥p
Lp(Br)

)
. (2.25)

Furthermore, for every v ∈ H1(Br \ Γ̃),∫
Br\Γ̃

|∇v|2 dy = 1
2

(∫
Br

|∇R+(v)|2 dy +
∫

Br

|∇R−(v)|2 dy
)
. (2.26)

Proposition 2.2.4. For any r > 0 there exists a linear continuous trace operator

γr : H1(Br \ Γ̃) → L2(∂Br).

Furthermore γr is compact.

Proof. Since B+
r and B−

r are Lipschitz domains, there exist two linear, continuous and com-
pact trace operators γ+

r : H1(B+
r ) → L2(∂B+

r ∩ ∂Br) and γ−
r : H1(B−

r ) → L2(∂B−
r ∩ ∂Br).

By setting

γr(v)(y) :=
{
γ+

r (v)(y), if yN > 0,
γ−

r (v)(y), if yN < 0,

we complete the proof.

Letting γr be the trace operator introduced in Proposition 2.2.4, we observe that∫
∂Br

|γr(v)|2 dS = 1
2

(∫
∂Br

|γr(R+(v))|2 dS +
∫

∂Br

|γr(R−(v))|2 dS
)

(2.27)

for every v ∈ H1(Br \ Γ̃). With a slight abuse of notation we will often write v instead of
γr(v) on ∂Br.

Proposition 2.2.5. If N ≥ 3 and r > 0, then, for any v ∈ H1(Br \ Γ̃),
(N − 2

2
)2∫

Br

v2

|x|2
dx ≤

∫
Br\Γ̃

|∇v|2 dx+ N − 2
2r

∫
∂Br

v2 dS. (2.28)

Proof. By scaling, [132, Theorem 1.1] proves the claim for R+(v) and R−(v). Then we
conclude by (2.25), (2.26), and (2.27).
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Proposition 2.2.6. Let N ≥ 2 and q ≥ 1 be such that q ≤ 2∗ = 2N
N−2 if N ≥ 3 and q < ∞ if

N = 2. Then
H1(Br \ Γ̃) ⊂ Lq(Br) for every r > 0

and there exists SN,q > 0 (depending only on N and q) such that

∥v∥2
Lq(Br) ≤ SN,q r

N(2−q)+2q
q

(∫
Br\Γ̃

|∇v|2 dx+ 1
r

∫
∂Br

v2 dS

)
, (2.29)

for all r > 0 and v ∈ H1(Br \ Γ̃).
Proof. Since (∫

B1
|∇v|2 dx+

∫
∂B1

v2 dS

) 1
2

is an equivalent norm on H1(B1), from a scaling argument and Sobolev embedding Theorems
it follows that, for all q ∈ [1, 2∗] if N ≥ 3 and q ∈ [1,∞) if N = 2, there exists SN,q > 0 such
that, for all r > 0 and v ∈ H1(Br),

∥v∥2
Lq(Br) ≤ SN,qr

N(2−q)+2q
q

(∫
Br

|∇v|2 dx+ 1
r

∫
∂Br

v2 dS

)
.

Using (2.24), (2.25), (2.26) and (2.27) we complete the proof.

Proposition 2.2.7. For any r > 0, h ∈ L
N
2 +ϵ(Br) with ϵ > 0, and v ∈ H1(Br \ Γ̃), there

holds ∫
Br

|h|v2 ≤ ηh(r)
(∫

Br\Γ̃
|∇v|2 dx+ 1

r

∫
∂Br

v2 dS

)
, (2.30)

where
ηh(r) = SN,qϵ ∥h∥

L
N
2 +ϵ(Br)

r
4ϵ

N+2ϵ and qϵ := 2N + 4ϵ
N − 2 + 2ϵ . (2.31)

Proof. For any v ∈ H1(Br \ Γ̃)∫
Br

|h|v2 dx ≤ ∥h∥
L

N
2 +ϵ(Br)

(∫
Br

|v|qϵ dx

)2/qϵ

≤ SN,qϵ ∥h∥
L

N
2 +ϵ(Br)

r
4ϵ

N+2ϵ

(∫
Br\Γ̃

|∇v|2 dx+ 1
r

∫
∂Br

v2dS

)
thanks to Hölder’s inequality and (2.29).

Remark 2.2.8. If f satisfies (2.7), then f ∈ L
N
2 +ϵ(BR), so that Proposition 2.2.7 applies to

potentials satisfying either (2.6) or (2.7).

Remark 2.2.9. By (2.30), (2.17) and (2.13), for any r ∈ (0, r1), h ∈ L
N
2 +ϵ(Br), and v ∈

H1(Br \ Γ̃), we have that

∫
Br\Γ̃

|∇v|2 dy ≤ 2
∫

Br\Γ̃
(A∇v · ∇v − hv2) dy + 2ηh(r)

(∫
Br\Γ̃

|∇v|2 dy + 2
r

∫
∂Br

µv2 dS

)
and therefore, if ηh(r) < 1

2 ,∫
Br\Γ̃

|∇v|2 dy ≤ 2
1 − 2ηh(r)

∫
Br\Γ̃

(A∇v · ∇v − hv2) dy + 4ηh(r)
(1 − 2ηh(r))r

∫
∂Br

µv2 dS. (2.32)
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2.2.3 Approximating problems

In this section we construct a sequence of problems in smooth sets approximating the straight-
ened cracked domain. We define, for any n ∈ N \ {0},

gn : R → R, gn(t) := nt4

and, for any r ∈ (0, r1],

Ωn,r := {(y′, yN−1, yN ) ∈ Br : yN−1 < gn(yN )}

and
Γn,r := {(y′, yN−1, yN ) ∈ Br : yN−1 = gn(yN )} = ∂Ωn,r ∩Br.

The domains Ωn,r approximate Br \ Γ̃ in the following sense: for every y ∈ Br \ Γ̃, there exists
n̄ ∈ N \ {0} such that y ∈ Ωn,r for all n ≥ n̄. Moreover Ωn,r ∩ Γ̃ = ∅ for any r ∈ (0, r1] and
n ∈ N \ {0}. We also note that Ωn,r is a Lipschitz domain and Γn,r is a C2-smooth portion of
its boundary.

Proposition 2.2.10. Let ν(y) be the outward normal vector to ∂Ωn,r1 in y. Then

y · ν(y) ≤ 0 for all y ∈ Γn,r1 , (2.33)
A(y)y · ν(y) ≤ 0 for all y ∈ Γn,r1 . (2.34)

Proof. As a first step we notice that

gn(t) − 1
3 tg

′
n(t) = nt4 − 4

3nt
4 = −1

3nt
4 ≤ 0, gn(t) − tg′

n(t) ≤ 0 (2.35)

and that
ν(y) = (0, 1,−g′

n(yN ))√
1 + (g′

n(yN ))2 for all y ∈ Γn,r1 .

Then, for all y ∈ Γn,r1 ,

ν(y) · y = (0, 1,−g′
n(yN ))√

1 + (g′
n(yN ))2 · (y′, gn(yN ), yN ) = gn(yN ) − yNg

′
n(yN )√

1 + (g′
n(yN ))2 ≤ 0

due to (2.35). We have then proved (2.33) (and (2.34) in the case N = 2 in view of (2.14)).
If N ≥ 3, possibly choosing r1 smaller in Proposition 2.2.1, for all y ∈ Γn,r1 we have that√

1 + (g′
n(yN ))2A(y)y · ν(y) = gn(yN )(1 +O(|y′|) +O(yN−1)) − det JF (y) yNg

′
n(yN )

≤ 3
2gn(yN ) − 1

2yNg
′
n(yN ) = 3

2(gn(yN ) − 1
3yNg

′
n(yN )),

thanks to ii) in Proposition 2.2.1, (2.11) and (2.12). Then, by (2.35) we finally obtain (2.34)
also for N ≥ 3.

Let

RN
+ := {y = (y′, yN−1, yN ) ∈ RN : yN > 0} and RN

− := {y = (y′, yN−1, yN ) ∈ RN : yN < 0}.
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For any r ∈ (0, r1] and n ∈ N \ {0} let

Ω+
n,r := Ωn,r ∩B+

r , Ω−
n,r := Ωn,r ∩B−

r , Sn,r := ∂Ωn,r ∩ ∂Br. (2.36)

For all n ∈ N \ {0} we also define

K+
n,r1 := {y = (y′, yN−1, yN ) ∈ RN

+ : either yN−1 < gn(yN ) or |y| > r1},
K−

n,r1 := {y = (y′, yN−1, yN ) ∈ RN
− : either yN−1 < gn(yN ) or |y| > r1}.

Since Ωn,r is a Lipschitz domain, for any r ∈ (0, r1] and n ∈ N \ {0} there exists a trace
operator

γn,r : H1(Ωn,r) → L2(∂Ωn,r).

We define
H1

0,Sn,r
(Ωn,r) := {u ∈ H1(Ωn,r) : γn,r(u) = 0 on Sn,r}.

The following proposition provides an extension operator from H1
0,Sn,r

(Ωn,r) to H1(Br1 \ Γ̃)
with an operator norm bounded uniformly with respect to n.

Proposition 2.2.11. For any r ∈ (0, r1) and n ∈ N \ {0} there exists an extension operator

ξ0
n,r : H1

0,Sn,r
(Ωn,r) → H1(Br1 \ Γ̃)

such that, for any ϕ ∈ H1
0,Sn,r

(Ωn,r),

ξ0
n,r(ϕ)

∣∣
Ωn,r

= ϕ, ξ0
n,r(ϕ) = 0 on Ωn,r1 \ Ωn,r, ξ0

n,r(ϕ) ∈ H1
0,∂Br1

(Br1 \ Γ̃), (2.37)

and ∥∥∥ξ0
n,r(ϕ)

∥∥∥
H1(Br1 \Γ̃)

≤ c0 ∥ϕ∥H1(Ωn,r) = c0

(∫
Ωn,r

(
ϕ2 + |∇ϕ|2

)
dy

)1/2
, (2.38)

where c0 > 0 is independent of n, r, and ϕ.

Proof. It is well known that, sinceK+
n,r1 andK−

n,r1 are uniformly Lipschitz domains, there exist
continuous extension operators ξ+

n : H1(K+
n,r1) → H1(RN

+ ) and ξ−
n : H1(K−

n,r1) → H1(RN
− ),

see [124], [36] and [99]. Furthermore, since the Lipschitz constants of the parameterization of
∂K+

n,r1 and ∂K−
n,r1 are bounded uniformly with respect to n, there exists a constant C > 0,

which does not depend on n, such that∥∥∥ξ+
n (v)

∥∥∥
H1(RN

+ )
≤ C ∥v∥H1(K+

n,r1 ) and
∥∥ξ−

n (w)
∥∥

H1(RN
− ) ≤ C ∥w∥H1(K−

n,r1 ) (2.39)

for all v ∈ H1(K+
n,r1) and w ∈ H1(K−

n,r1).
If ϕ ∈ H1

0,Sn,r
(Ωn,r) then the trivial extension ϕ̄+ of ϕ

∣∣
Ω+

n,r
to K+

n,r1 belongs to H1(K+
n,r1)

and the trivial extension ϕ̄− of ϕ
∣∣
Ω−

n,r
to K−

n,r1 belongs to H1(K−
n,r1). Then we define

ξ0
n,r(ϕ)(y) :=

{
ξ+

n (ϕ̄+)(y), if y ∈ B+
r1 ,

ξ−
n (ϕ̄−)(y), if y ∈ B−

r1 ,

which belongs to H1(Br1 \ Γ̃) and satisfies (2.38) in view of (2.39). Furthermore (2.37) follows
directly from the definition of ξ0

n,r.
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The next proposition establishes a Poincaré type inequality for H1
0,Sn,r

(Ωn,r)-functions,
with a constant independent of n.

Proposition 2.2.12. For any r ∈ (0, r1], n ∈ N \ {0}, and ϕ ∈ H1
0,Sn,r

(Ωn,r)

∫
Ωn,r

ϕ2dy ≤ r2

N − 1

∫
Ωn,r

|∇ϕ|2 dy (2.40)

and

∥ϕ∥H1
0,Sn,r

(Ωn,r) :=
(∫

Ωn,r

|∇ϕ|2 dy
) 1

2

(2.41)

is an equivalent norm on H1
0,Sn,r

(Ωn,r).

Proof. For any ϕ ∈ C∞(Ωn,r) such that ϕ = 0 in a neighbourhood of Sn,r we have that

div(ϕ2y) = 2ϕ∇ϕ · y +Nϕ2

so that

N

∫
Ωn,r

ϕ2 dy = −2
∫

Ωn,r

ϕ∇ϕ · y dy +
∫

Γn,r

ϕ2y · ν dS ≤
∫

Ωn,r

ϕ2 dy + r2
∫

Ωn,r

|∇ϕ|2 dy,

since y · ν ≤ 0 on Γn,r by(2.33). Then we may conclude that∫
Ωn,r

ϕ2 dy ≤ r2

N − 1

∫
Ωn,r

|∇ϕ|2 dy,

for all ϕ ∈ C∞(Ωn,r) such that ϕ = 0 in a neighbourhood of Sn,r. Since Ωn,r is a Lipschitz
domain, (2.40) holds for any ϕ ∈ H1

0,Sn,r
(Ωn,r) by [23, Theorem 3.1]. The second claim is now

obvious.

From now on we consider on H1
0,Sn,r

(Ωn,r) the norm ∥ · ∥H1
0,Sn,r

defined in (2.41).

Proposition 2.2.13. Let r ∈ (0, r1), n ∈ N \ {0}, h ∈ L
N
2 +ϵ(Br) with ϵ > 0, and qϵ be as in

(2.31). Then, for any ϕ ∈ H1
0,Sn,r

(Ωn,r),

∫
Ωn,r

|h|ϕ2 dy ≤ c2
0
N − 1 + r2

1
N − 1 SN,qϵr

4ϵ
N+2ϵ

1 ∥h∥
L

N
2 +ϵ(Br)

∫
Ωn,r

|∇ϕ|2 dy. (2.42)

Proof. We have, for every ϕ ∈ H1
0,Sn,r

(Ωn,r),

∫
Ωn,r

|h|ϕ2 dy ≤
∫

Br

|h||ξ0
n,r(ϕ)|2 dy ≤ ∥h∥

L
N
2 +ϵ(Br)

(∫
Br1

|ξ0
n,r(ϕ)|qϵ dy

)2
qϵ

≤ SN,qϵr
4ϵ

N+2ϵ

1 ∥h∥
L

N
2 +ϵ(Br)

∫
Br1 \Γ̃

|∇ξ0
n,r(ϕ)|2 dy

≤ c2
0
N − 1 + r2

N − 1 SN,qϵr
4ϵ

N+2ϵ

1 ∥h∥
L

N
2 +ϵ(Br)

∫
Ωn,r

|∇ϕ|2 dy,

thanks to Hölder’s inequality, (2.29), Proposition 2.2.11, and Proposition 2.2.12.
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Hereafter we fix a potential f satisfying either (2.6) or (2.7) and define f̃ := | det JF | (f ◦F )
as in Remark 2.2.3. Thanks to Remark 2.2.3 we have that f̃ satisfies either (2.6) or (2.7) as
well. If f (and consequently f̃) satisfies (2.7), we define

fn(y) =


n, if f̃(y) > n,

f̃(y), if |f̃(y)| ≤ n,

−n, if f̃(y) < −n,
(2.43)

so that
fn ∈ L∞(Br1) and |fn| ≤ |f̃ | a.e. in Br1 for all n ∈ N \ {0} (2.44)

and
fn → f̃ a.e. in Br1 . (2.45)

If f satisfies (2.6), we just let
fn := f̃ for any n ∈ N. (2.46)

We observe that
fn → f̃ in L

N
2 +ϵ(Br1) as n → ∞ (2.47)

as a consequence of (2.44), (2.45) and the Dominated Convergence Theorem if assumption
(2.7) holds and fn is defined in (2.43), in view of Remark 2.2.8; on the other hand (2.47) is
obvious if assumption (2.6) holds and fn is defined in (2.46).

Since under both assumptions (2.6) and (2.7) we have that f̃ ∈ L
N
2 +ϵ(Br1) (see Remark

2.2.8), by the absolute continuity of the Lebesgue integral we can choose r0 ∈ (0,min{1, r1})
such that

ηf̃ (r0) < 1
2 and c2

0
N − 1 + r2

1
N − 1 SN,qϵr

4ϵ
N+2ϵ

1 ∥f̃∥
L

N
2 +ϵ(Br0 )

<
1
4 , (2.48)

where qϵ and ηf̃ are defined in (2.31).
Let U = u ◦ F , where u is a fixed weak solution to (2.1) and F is the diffeomorphism

introduced in Section 2.2.1, so that U weakly solves (2.23). For any n ∈ N \ {0}, we consider
the following sequence of approximating problems, with potentials fn defined in (2.43)–(2.46):

− div(A∇Un) = fnUn, in Ωn,r0 ,

A∇Un · ν = 0, on Γn,r0 ,

γn,r0(Un) = γn,r0(U), on Sn,r0 ,

(2.49)

with r0 as in (2.48). A weak solution to problem (2.49) is a function Un ∈ H1(Ωn,r0) such
that Un − U ∈ H1

0,Sn,r0
(Ωn,r0) and∫

Ωn,r0

(A∇Un · ∇ϕ− fnUnϕ) dy = 0

for all ϕ ∈ H1
0,Sn,r0

(Ωn,r0). If Un weakly solves (2.49), then Wn := U − Un ∈ H1
0,Sn,r0

(Ωn,r0)
and ∫

Ωn,r0

(A∇Wn · ∇ϕ− fnWnϕ) dy =
∫

Ωn,r0

(A∇U · ∇ϕ− fnUϕ) dy (2.50)

for any ϕ ∈ H1
0,Sn,r0

(Ωn,r0).
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For every n ∈ N \ {0}, let us consider the bilinear form

Bn : H1
0,Sn,r0

(Ωn,r0) ×H1
0,Sn,r0

(Ωn,r0) → R, Bn(v, ϕ) :=
∫

Ωn,r0

(A∇v · ∇ϕ− fnvϕ) dy, (2.51)

and the functional

Ln : H1
0,Sn,r0

(Ωn,r0) → R, Ln(ϕ) :=
∫

Ωn,r0

(A∇U · ∇ϕ− fnUϕ) dy. (2.52)

Proposition 2.2.14. The bilinear form Bn defined in (2.51) is continuous and coercive; more
precisely

Bn(ϕ, ϕ) ≥ 1
4 ∥ϕ∥2

H1
0,Sn,r0

(Ωn,r0 ) for all ϕ ∈ H1
0,Sn,r0

(Ωn,r0). (2.53)

Furthermore the functional Ln defined in (2.52) belongs to (H1
0,Sn,r0

(Ωn,r0))∗ and there exists
a constant ℓ > 0 independent of n such that

|Ln(ϕ)| ≤ ℓ ∥ϕ∥H1
0,Sn,r0

(Ωn,r0 ) for all ϕ ∈ H1
0,Sn,r

(Ωn,r0). (2.54)

Proof. The continuity of Bn and (2.53) easily follow from (2.13),(2.44), (2.42) and (2.48).
Thanks to Hölder’s inequality, (2.44), (2.13), (2.30), (2.42) and (2.48)

|Ln(ϕ)| ≤ 2 ∥∇U∥L2(Ωn,r0 ) ∥ϕ∥H1
0,Sn,r0

(Ωn,r0 ) +
(∫

Br0

|f̃ |U2 dx

)1
2
(∫

Ωn,r0

|f̃ |ϕ2 dx

)1
2

≤

2 ∥∇U∥L2(Br0 \Γ̃) + 1
2
√
ηf̃ (r0)

(∫
Br0 \Γ̃

|∇U |2 dx+ 1
r0

∫
∂Br0

U2 dS

)1
2
 ∥ϕ∥H1

0,Sn,r0
(Ωn,r0 ) ,

thus implying (2.54).

Corollary 2.2.15. Let u be a weak solution to (2.1) and U = u◦F . Let either (2.6) hold and
{fn} be as in (2.46), or (2.7) hold and {fn} be as in (2.43). Let r0 be as in (2.48) and ℓ be as
in Proposition 2.2.14. Then, for any n ∈ N\ {0}, there exists a solution Wn ∈ H1

0,Sn,r0
(Ωn,r0)

of (2.50) such that
∥Wn∥H1

0,Sn,r0
(Ωn,r0 ) ≤ 4ℓ. (2.55)

Proof. The existence of a solution Wn of (2.50) follows from the Lax-Milgram Theorem,
taking into account Proposition 2.2.14. Estimate (2.55) follows from (2.53) and (2.54) with
ϕ = Wn.

We are now in position to prove the main result of this section.

Theorem 2.2.16. Suppose that f satisfies either (2.6) or (2.7), u is a weak solution of (2.1),
and U = u ◦F with F as in Section 2.2.1. Let {fn}n∈N satisfies (2.46) under hypothesis (2.6)
or (2.43) under hypothesis (2.7). Let r0 ∈ (0, r1) be as (2.48). Then there exists {Un}n∈N\{0} ⊂
H1(Br0 \ Γ̃) such that Un weakly solves (2.49) for any n ∈ N \ {0} and Un → U in H1(Br0 \ Γ̃)
as n → ∞. Furthermore Un ∈ H2(Ωn,r) for any r ∈ (0, r0) and n ∈ N \ {0}.
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Proof. Let r0 ∈ (0, r1) be as in (2.48). For any n ∈ N \ {0}, let Wn ∈ H1
0,Sn,r0

(Ωn,r0) be
the solution to (2.50) given by Corollary 2.2.15. Then U −Wn weakly solves problem (2.49)
and we define Un := U − ξ0

n,r0(Wn), with ξ0
n,r0 being the extension operator introduced in

Proposition 2.2.11. We observe that Un ∈ H1(Br0 \ Γ̃). To prove that Un converges to U in
H1(Br0 \ Γ̃) as n → ∞, we notice that

∥U − Un∥2
H1(Br0 \Γ̃) ≤ c2

0 ∥Wn∥2
H1(Ωn,r0 ) ≤ 4 c2

0
N − 1 + r2

0
N − 1

∫
Ωn,r0

(A∇Wn · ∇Wn − fnW
2
n) dy,

by Proposition 2.2.11, (2.40), and (2.53). Therefore it is enough to prove that

lim
n→∞

∫
Ωn,r0

(A∇Wn · ∇Wn − fnW
2
n) dy = 0. (2.56)

Let

On := (Br1 \ Γ̃) \ Ωn,r1 (2.57)

for any n ∈ N \ {0}. Since Wn ∈ H1
0,Sn,r0

(Ωn,r0) solves (2.50) and U is a solution to (2.23),
by Hölder’s inequality, (2.13) and Proposition 2.2.11 we have that∣∣∣∣ ∫

Ωn,r0

(A∇Wn · ∇Wn − fnW
2
n) dy

∣∣∣∣ =
∣∣∣∣∣
∫

Ωn,r1

(A∇U · ∇(ξ0
n,r0(Wn)) − fnU ξ

0
n,r0(Wn)) dy

∣∣∣∣∣
=
∣∣∣∣ ∫

Br1 \Γ̃
(A∇U · ∇(ξ0

n,r0(Wn)) − fnU ξ
0
n,r0(Wn)) dy

−
∫

On

(A∇U · ∇(ξ0
n,r0(Wn)) − fnU ξ

0
n,r0(Wn)) dy

∣∣∣∣
=
∣∣∣∣ ∫

Br1 \Γ̃
(A∇U · ∇(ξ0

n,r0(Wn)) − f̃U ξ0
n,r0(Wn)) dy +

∫
Br1 \Γ̃

(f̃ − fn)U ξ0
n,r0(Wn)) dy

−
∫

On

(A∇U · ∇(ξ0
n,r0(Wn)) − fnU ξ

0
n,r0(Wn)) dy

∣∣∣∣
≤
∣∣∣∣∫

On

(A∇U · ∇(ξ0
n,r0(Wn)) − fnU ξ

0
n,r0(Wn)) dy

∣∣∣∣+
∣∣∣∣∣
∫

Br1 \Γ̃
(f̃ − fn)U ξ0

n,r0(Wn) dy
∣∣∣∣∣

≤ 2 ∥∇U∥L2(On)

∥∥∥∇ξ0
n,r0(Wn)

∥∥∥
L2(Br1 \Γ̃)

+ ∥fn∥
L

N
2 +ϵ(On)

∥U∥Lqϵ (On)

∥∥∥ξ0
n,r0(Wn)

∥∥∥
Lqϵ (Br1 )

+ ∥f̃ − fn∥
L

N
2 +ϵ(Br1 )

∥U∥Lqϵ (Br1 )

∥∥∥ξ0
n,r0(Wn)

∥∥∥
Lqϵ (Br1 )

≤ 4c0ℓ

√
N − 1 + r2

0√
N − 1

(
2 ∥∇U∥L2(On) +

√
SN,qϵr

2ϵ
N+2ϵ

1 ∥f̃∥
L

N
2 +ϵ(On)

∥U∥Lqϵ (On)

+
√

SN,qϵr
2ϵ

N+2ϵ

1 ∥f̃ − fn∥
L

N
2 +ϵ(Br1 )

∥U∥Lqϵ (Br1 )

)
,

where qϵ is defined in (2.31) and we have used (2.44), (2.29), (2.38), (2.40), and (2.55) in the
last inequality. We observe that

lim
n→∞

|On| = 0,
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where |On| is the N -dimensional Lebesgue measure of On. Then, since ∇U ∈ L2(Br1 \Γ̃), U ∈
Lqϵ(Br1) by Proposition 2.2.6, and f̃ ∈ L

N
2 +ϵ(Br1), (2.56) follows by the absolute continuity

of the integral and convergence (2.47).
We observe that fnUn ∈ L2(Ωn,r0). Indeed, under assumption (2.6), by Remark 2.2.3 we

have that f̃ ∈ W 1, N
2 +ϵ(Br1 \ Γ̃) and then, by Sobolev embeddings and Hölder’s inequality, we

easily obtain that fnUn = f̃Un ∈ L2(Ωn,r0). Under assumption (2.7), fn is defined in (2.43)
and fn ∈ L∞(Br1), hence fnUn ∈ L2(Ωn,r0).

Since Γn,r0 is C∞-smooth and fnUn ∈ L2(Ωn,r0), by classical elliptic regularity theory, see
e.g. [81, Theorem 2.2.2.5], we deduce that Un ∈ H2(Ωn,r) for any r ∈ (0, r0). The proof is
thereby complete.

2.3 The Almgren type frequency function
Let u ∈ H1(BR \Γ) be a non-trivial weak solution to (2.1) and U = u◦F ∈ H1(Br1 \ Γ̃) be the
corresponding solution to (2.23). Let r0 ∈ (0,min{1, r1}) be as in (2.48). For any r ∈ (0, r0],
we define

H(r) := 1
rN−1

∫
∂Br

µU2 dS, (2.58)

where µ is the function introduced in (2.16), and

D(r) := 1
rN−2

∫
Br\Γ̃

(A∇U · ∇U − f̃ U2) dy. (2.59)

Proposition 2.3.1. If r ∈ (0, r0] then H(r) > 0.

Proof. We suppose by contradiction that there exists r ∈ (0, r0] such that H(r) = 0. By
(2.17), it follows that U weakly solves (2.23) with the extra condition U = 0 on ∂Br. Then
by (2.32) we obtain that U = 0 on Br. By classical unique continuation principles for elliptic
equations, see e.g. [79], we conclude that u = 0 on BR, which is a contradiction.

Proposition 2.3.2. We have that H ∈ W 1,1
loc ((0, r0]) and

H ′(r) = 1
rN−1

(
2
∫

∂Br

µU
∂U

∂ν
dS +

∫
∂Br

U2∇µ · ν dS
)

= 2
rN−1

∫
∂Br

µU
∂U

∂ν
dS +H(r)O(1) as r → 0+, (2.60)

in a distributional sense and for a.e. r ∈ (0, r0).

Remark 2.3.3. To explain in what sense the term ∂U
∂ν in (2.60) is meant, we observe that, if

∇U is the distributional gradient of U in Br1 \Γ̃, then ∇U ∈ L2(Br1 ,RN ) and ∂U
∂ν := ∇U · y

|y| ∈
L2(Br1). By the Coarea Formula it follows that ∇U ∈ L2(∂Br,RN ) and ∂U

∂ν ∈ L2(∂Br) for
a.e. r ∈ (0, r1).
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Proof. For any ϕ ∈ C∞
0 (0, r0) we define v(y) := ϕ(|y|). Then we have∫ r0

0
H(r)ϕ′(r) dy =

∫ r0

0

1
rN−1

(∫
∂Br

µU2 dS

)
ϕ′(r) dr

=
∫

B+
r0

1
|y|N

µ(y)U2(y)∇v(y) · y dy +
∫

B−
r0

1
|y|N

µ(y)U2(y)∇v(y) · y dy

= −
∫

Br0 \Γ̃

1
|y|N

(2µ(y)v(y)U(y)∇U(y) · y + v(y)U2(y)∇µ(y) · y) dy

= −
∫ r0

0

2
rN−1

(∫
∂Br

µU
∂U

∂ν
dS

)
ϕ(r) dr −

∫ r0

0

1
rN−1

(∫
∂Br

U2∇µ · ν dS
)
ϕ(r) dr,

which proves (2.60) thanks to (2.19). Since r−N+1 is bounded in any compact subset of
(0, r0], then, by (2.17), (2.19) and the Coarea Formula, H and H ′ are locally integrable so
that H ∈ W 1,1

loc ((0, r0]).

Now we turn our attention to D. Henceforth we let {fn} be as in (2.46), if f satisfies
(2.6), or as in (2.43), if f satisfies (2.7), and we consider the sequence {Un} converging to U
in H1(Br0 \ Γ̃) provided by Theorem 2.2.16.

Remark 2.3.4. By Proposition 2.2.6 and (2.31), Un → U in Lqϵ(Br0). Then, since fn → f̃

in L
N
2 +ϵ(Br0) by (2.47), from Hölder’s inequality it easily follows that

lim
n→∞

∫
Br0

|f̃ U2 − fn U
2
n| dy = 0. (2.61)

Moreover, if f satisfies (2.6), ∇f̃ ∈ L
N
2 +ϵ(Br0 ,RN ) and hence

lim
n→∞

∫
Br0 \Γ

|(∇f̃ · β) (U2 − U2
n)| dx = 0, (2.62)

since the vector field β defined in (2.16) is bounded in view of (2.20).

Lemma 2.3.5. If Fn → F in L1(Br0), then there exists a subsequence {Fnk
}k∈N such that,

for a.e. r ∈ (0, r0),

lim
k→∞

∫
∂Br

|F − Fnk
| dS = 0 and lim

k→∞

∫
Snk,r

Fnk
dS =

∫
∂Br

F dS,

where the notation Sn,r has been introduced in (2.36).

Proof. Let hn(r) :=
∫

∂Br
|Fn − F | dS. Since, by assumption and the Coarea Formula,

lim
n→∞

∫
Br0

|F − Fn| dy = lim
n→∞

∫ r0

0
hn(r)dr = 0,

we have that hn → 0 in L1(0, r0). Hence there exists a subsequence {hnk
}k∈N converging to

0 a.e. in (0, r0). Therefore Fnk
→ F in L1(∂Br) for a.e. r ∈ (0, r0). It follows that, for a.e.

r ∈ (0, r0),∫
Snk,r

Fnk
dS −

∫
∂Br

F dS =
∫

∂Br

χSnk,r (Fnk
− F ) dS +

∫
∂Br

(χSnk
− 1)F dS → 0

as k → ∞, thus yielding the conclusion.
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Proposition 2.3.6. We have that D ∈ W 1,1
loc ((0, r0]),

D(r) = 1
rN−2

∫
∂Br

UA∇U · ν dS = r

2H
′(r) + rH(r)O(1) as r → 0+ (2.63)

and

D′(r) = (2 −N) 1
rN−1

∫
Br\Γ̃

(A∇U · ∇U − f̃U2) dy+ 1
rN−2

∫
∂Br

(A∇U · ∇U − f̃U2) dS (2.64)

in the sense of distributions and for a.e. r ∈ (0, r0).

Proof. The fact that D ∈ W 1,1
loc ((0, r0]) and (2.64) follow from the Coarea Formula and (2.30).

To prove (2.63) we consider the sequence {Un} introduced in Theorem 2.2.16. For every
r ∈ (0, r0) and n ∈ N \ {0},

1
rN−2

∫
Ωn,r

(A∇Un · ∇Un − fnU
2
n) dy = 1

rN−2

∫
Sn,r

UnA∇Un · ν dS

since Un solve (2.49) and Un ∈ H2(Ωn,r) by Theorem 2.2.16. Thanks to Remark 2.3.4,the
Dominated Convergence Theorem, and Lemma 2.3.5, we can pass to the limit, up to a sub-
sequence, as n → ∞ in the above identity for a.e. r ∈ (0, r0), thus proving the first equality
in (2.63). To prove the second equality in (2.63) we define

ζ(y) := µ(y)(β(y) − y)
|y|

= A(y)y
|y|

− A(y)y · y
|y|3

y.

Then, since ζ(y) · y = 0 and ζ · (0, . . . , 0, 1) = 0 on Γ̃, we have that∫
∂Br

UA∇U · ν dS −
∫

∂Br

µU
∂U

∂ν
dS = 1

2

∫
∂Br

ζ · ∇(U2) dS

= −1
2

∫
∂Br

div(ζ)U2 dS = rN−1H(r)O(1)

as r → 0, where we have used in the last equality the estimate

div(ζ)(y) =
(∇µ(y)

|y|
− µ(y)y

|y|3
)

(β(y) − y) + µ(y)
|y|

(
div(β)(y) −N

)
= O(1)

which follows from Proposition 2.2.2. Then we conclude by (2.60).

The approximation procedure developed above also allows us to derive the following inte-
gration by parts formula.

Proposition 2.3.7. There exists a set M ⊂ [0, r0] having null 1-dimensional Lebesgue mea-
sure such that, for all r ∈ (0, r0] \ M, A∇U · ν ∈ L2(∂Br) and∫

Br\Γ̃
A∇U · ∇ϕdx =

∫
Br

f̃Uϕ dx+
∫

∂Br

(A∇U · ν)ϕdS

for every ϕ ∈ H1(Br0 \ Γ̃), where A∇U · ν on ∂Br is meant in the sense of Remark 2.3.3.
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Proof. Since Un → U in H1(Br0 \ Γ̃) in view of Theorem 2.2.16, by Lemma 2.3.5 there exist
a subsequence {Unk

} and a set M ⊂ [0, r0] having null 1-dimensional Lebesgue measure such
that A∇U · ν ∈ L2(∂Br) and A∇Unk

· ν → A∇U · ν in L2(∂Br) for all r ∈ (0, r0] \ M. Since
Un ∈ H2(Ωn,r) for any r ∈ (0, r0) and n ∈ N \ {0} by Theorem 2.2.16, from (2.49) it follows
that ∫

Ωn,r

(A∇Un · ∇ϕ− fnUnϕ) dy =
∫

Sn,r

ϕA∇Un · ν dS.

Arguing as in the proof of Proposition 2.3.6, we can pass to the limit along n = nk as k → ∞
in the above identity for all r ∈ (0, r0] \ M, thus obtaining the conclusion.

Theorem 2.3.8. (Pohozaev type inequality) Under either assumption (2.6) or assumption
(2.7), for any r ∈ (0, r0] we have that

r

∫
∂Br

A∇U · ∇U dS ≥ 2r
∫

∂Br

|A∇U · ν|2

µ
dS +

∫
Br\Γ̃

(A∇U · ∇U) div(β) dy

+ 2
∫

Br\Γ̃

A∇U · y
µ

f̃ U dy +
∫

Br\Γ̃
(dA∇U∇U) · β dy − 2

∫
Br\Γ̃

Jβ(A∇U) · ∇U dy, (2.65)

which can be rewritten as

r

∫
∂Br

(A∇U · ∇U − f̃ U2) dS ≥ 2r
∫

∂Br

|A∇U · ν|2

µ
dS

+
∫

Br\Γ̃
(A∇U · ∇U) div(β) dy +

∫
Br\Γ̃

(f̃ div(β) + ∇f̃ · β)U2 dy

+
∫

Br\Γ̃
(dA∇U∇U) · β dy − 2

∫
Br\Γ̃

Jβ(A∇U) · ∇U dy (2.66)

if f satisfies (2.6).

Proof. By Theorem 2.2.16 we have that Un ∈ H2(Ωn,r) for any r ∈ (0, r0) and n ∈ N \ {0}.
Then, since A is symmetric by Proposition 2.2.1, we may write the following Rellich-Nec̆as
identity in a distributional sense in Ωn,r:

div((A∇Un · ∇Un)β − 2(β · ∇Un)A∇Un) = (A∇Un · ∇Un) div(β)
− 2(β · ∇Un) div(A∇Un) + (dA∇Un∇Un) · β − 2Jβ(A∇Un) · ∇Un. (2.67)

Since Un ∈ H2(Ωn,r) and the components of A and β are Lipschitz continuous by Propositions
2.2.1 and 2.2.2, then (A∇Un∇Un)β − 2(β · ∇Un)A∇Un) ∈ W 1,1(Ωn,r). Therefore we can
integrate both sides of (2.67) on the Lipschitz domain Ωn,r and apply the Divergence Theorem
to obtain, in view of (2.16) and (2.49),

r

∫
Sn,r

(
A∇Un · ∇Un − 2 |A∇Un · ν|2

µ

)
dS +

∫
Γn,r

(A∇Un · ∇Un)Ay · ν
µ

dS

=
∫

Ωn,r

(A∇Un · ∇Un) div(β) dy + 2
∫

Ωn,r

A∇Un · y
µ

fnUn dy

+
∫

Ωn,r

(dA∇Un∇Un) · β dy − 2
∫

Ωn,r

Jβ(A∇Un) · ∇Un dy. (2.68)
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From Proposition 2.2.10, (2.13), and (2.17) it follows that, for all n ∈ N \ {0} and r ∈ (0, r0),∫
Γn,r

(A∇Un · ∇Un)Ay · ν
µ

dS ≤ 0. (2.69)

From Theorem 2.2.16, we recall that Un → U strongly in H1(Br0 \ Γ̃), while Propositions
2.2.1 and 2.2.2 imply that

µ ∈ L∞(Br0 ,R), β ∈ L∞(Br0 ,RN ), div β ∈ L∞(Br0 ,R), (2.70)

A ∈ L∞(Br0 ,RN2),
{
∂ai,j

∂yh

}
i,j,h=1,...,N

∈ L∞(Br0 ,RN3).

Furthermore, under assumption (2.6), we have that, by Sobolev embeddings (see Proposition
2.2.6), if N ≥ 3, then fn = f̃ ∈ LN (Br0) and Un → U strongly in L2∗(Br0), whereas, if
N = 2, then fn = f̃ ∈ L2(1+ϵ)/(1−ϵ)(Br0) and Un → U strongly in L(1+ϵ)/ϵ(Br0); then, since
∇Un → ∇U in L2(Br0), Hölder’s inequality ensures that

fnUnA∇Un · y → f̃UA∇U · y in L1(Br0). (2.71)

Under assumption (2.7), we have that Hardy’s inequality (see Proposition 2.2.5), Proposition
2.2.4 and (2.44) yield that∫

Br0

|fny(Un − U)|2 dy ≤ const r4ϵ
0

∫
Br0

|y|−2|Un − U |2 dy → 0 as n → ∞

which, thanks to Proposition 2.2.5 again and the Dominated Convergence Theorem, easily
implies that

fnyUn → f̃yU in L2(Br0),
thus proving (2.71) also under assumption (2.7).

Then, thanks to the Dominated Convergence Theorem, (2.22), (2.71) and Lemma 2.3.5,
we can pass to the limit in (2.68) as n → ∞, up to a subsequence, and, taking into account
(2.69), we obtain inequality (2.65).

If assumption (2.6) holds then by (2.16), (2.46) and Proposition 2.2.2 we have that

2
∫

Ωn,r

A∇Un · y
µ

fnUn dy = 2
∫

Ωn,r

(β · ∇Un)f̃Un dy

= −
∫

Ωn,r

(f̃ div(β) + ∇f̃ · β)U2
n dy + r

∫
Sn,r

f̃ U2
n dS +

∫
Γn,r

f̃ U2
n β · ν dS. (2.72)

We define

O+
n,r := On ∩B+

r , O−
n,r := On ∩B−

r ,

Γ+
n,r := Γn,r ∩B+

r , Γ−
n,r := Γn,r ∩B−

r ,

where On is defined in (2.57). Taking into account that β · ν = Ay
µ · ν = 0 on ∂O+

n,r ∩ ∂RN
+

since ν = −(0, . . . , 1) and (2.11) holds, the Divergence Theorem yields that∫
Γ+

n,r

f̃U2
n β · ν dS = −r

∫
∂O+

n,r∩∂Br

f̃U2
n β · ν dS

+
∫

O+
n,r

(
f̃U2

n divβ+U2
n ∇f̃ · β + 2f̃Un∇Un · β

)
dy. (2.73)
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By (2.61), (2.70), and Lemma 2.3.5 there exists a subsequence {f̃ U2
nk
β · ν}k∈N converging in

L1(∂Br) and hence equi-integrable in ∂Br for a.e. r ∈ (0, r0), hence

lim
k→∞

∫
∂O+

nk,r∩∂Br

f̃ U2
nk
β · ν dS = 0 for a.e. r ∈ (0, r0).

Since ∇Un → ∇U in L2(B+
r0 ,R

N ), Un → U in Lqϵ(B+
r0) and f̃ ∈ LN+2ϵ(B+

r0) by (2.6) and
classical Sobolev embeddings, from (2.70) and Hölder’s inequality we deduce that

f̃Un∇Un · β → f̃U∇U · β in L1(B+
r0),

so that {f̃Un∇Un · β}n∈N is equi-integrable in B+
r0 . Therefore

lim
n→∞

∫
O+

n,r

f̃Un∇Un · β dy = 0 for all r ∈ (0, r0).

Moreover, also {divβ f̃ U2
n + U2

n ∇f̃ · β}n∈N is equi-integrable thanks to (2.61) and (2.62). It
follows that

lim
n→∞

∫
O+

n,r

(divβ f̃U2
n + ∇f̃ · β U2

n) dy = 0 for all r ∈ (0, r0).

Then from (2.73) we conclude that

lim
k→∞

∫
Γ+

nk,r

f̃U2
nk
β · ν dS = 0.

In a similar way we obtain that limk→∞
∫

Γ−
nk,r

f̃U2
nk
β · ν dS = 0 so that

lim
k→∞

∫
Γnk,r

f̃U2
nk
β · ν dS = 0.

Therefore (2.66) follows by passing to the limit in (2.68) and (2.72) as n → ∞ along a
subsequence, taking into account Proposition 2.2.10, the Dominated Convergence Theorem,
(2.22), Remark 2.3.4 and Lemma 2.3.5.

Proposition 2.3.9. For a.e. r ∈ (0, r0)

D′(r) ≥ 2r2−N
∫

∂Br

|A∇U · ν|2

µ
dS + r1−N

∫
Br\Γ̃

(div(β) + 2 −N)A∇U · ∇U dy

+ r1−N
∫

Br\Γ̃

(
f̃(div(β) +N − 2) + ∇f̃ · β

)
U2 dy

+ r1−N
∫

Br\Γ̃
(dA∇U∇U) · β dy − 2r1−N

∫
Br\Γ̃

Jβ(A∇U) · ∇U dy, (2.74)

if (2.6) holds, and

D′(r) ≥ 2r2−N
∫

∂Br

|A∇U · ν|2

µ
dS − r2−N

∫
∂Br

f̃U2 dS + (N − 2)r1−N
∫

Br

f̃U2 dy

+ r1−N
∫

Br\Γ̃
(A∇ū · ∇U)(div(β) + 2 −N) dy + 2r1−N

∫
Br\Γ̃

A∇U · y
µ

f̃U dy

+ r1−N
∫

Br\Γ̃
(dA∇U∇U) · β dy − 2r1−N

∫
Br\Γ̃

Jβ(A∇U) · ∇U dy (2.75)

if (2.7) holds.
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Proof. Estimates (2.74)–(2.75) are direct consequences of (2.64), (2.65), and (2.66).

We now introduce the Almgren frequency function, defined as

N : (0, r0] → R, N (r) := D(r)
H(r) . (2.76)

The above definition of N is well posed thanks to Proposition 2.3.1.

Proposition 2.3.10. If either assumptions (2.6) or (2.7) hold, then N ∈ W 1,1
loc ((0, r0]) and,

for any r ∈ (0, r0],
N (r) ≥ −2ηf̃ (r). (2.77)

Furthermore, for a.e. r ∈ (0, r0),

N ′(r) ≥ V(r) + W(r) (2.78)

where

V(r) =
2r
(( ∫

∂Br

|A∇U ·ν|2
µ dS

)( ∫
∂Br

µU2dS
)

−
(∫

∂Br
UA∇U · ν dS

)2
)

(∫
∂Br

µU2 dS
)2 ≥ 0 (2.79)

and
W(r) = O

(
r−1+ 4ϵ

N+2ϵ

)
(1 + N (r)) as r → 0+. (2.80)

Proof. Since 1/H,D ∈ W 1,1
loc ((0, r0]), then N ∈ W 1,1

loc ((0, r0]). Furthermore (2.32) directly
implies (2.77).

By(2.63), for a.e. r ∈ (0, r0)

N ′(r) = D′(r)H(r) −D(r)H ′(r)
H2(r) =

D′(r)H(r) − 2
rD

2(r)
H2(r) + D(r)O(1)

H(r)

=
D′(r)H(r) − 2

r r
4−2N

( ∫
∂Br

UA∇U · ν dS
)2

H2(r) +O(1)N (r)

as r → 0+. By Proposition 2.2.1, Proposition 2.2.2, (2.31) and (2.32)∣∣∣∣∣
∫

Br\Γ̃

(
(A∇U · ∇U)(div(β) + 2 −N) − 2Jβ(A∇U) · ∇U + (dA∇U∇U) · β

)
dy

∣∣∣∣∣
≤ O(r)

∫
Br\Γ̃

|∇U |2 dy

≤ O(r)
∫

Br\Γ̃
(A∇U · ∇U − f̃U2) dy +O

(
r

4ϵ
N+2ϵ

) ∫
∂Br

µU2 dS as r → 0+.

By (2.30), (2.32), and (2.17)∫
Br

f̃U2 dy ≤ O
(
r

4ϵ
N+2ϵ

) ∫
Br\Γ̃

|∇U |2 dy +O
(
r

2ϵ−N
N+2ϵ

) ∫
∂Br

U2 dS

≤ O
(
r

4ϵ
N+2ϵ

) ∫
Br\Γ̃

(A∇U · ∇U dy − f̃U2) +O
(
r

2ϵ−N
N+2ϵ

) ∫
∂Br

µU2 dS
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as r → 0+ and, by (2.21), the same holds for
∫

Br
(div β − N + 2)f̃U2 dy. In the same way

from (2.20) it follows that, if (2.6) holds,∫
Br

∇f̃ · βU2 dy ≤ O
(
r

4ϵ
N+2ϵ

) ∫
Br\Γ̃

(A∇U · ∇U dy − f̃U2) +O
(
r

2ϵ−N
N+2ϵ

) ∫
∂Br

µU2 dS

as r → 0+.
Under assumption (2.7), by Remark 2.2.3, (2.18), (2.13), (2.31) (2.30), (2.32) and Hölder’s

inequality,

∫
Br\Γ̃

A∇U · y
µ

f̃U dy = O(r)
∫

Br\Γ̃
|∇U ||f̃ |U dy ≤ O(rε) ∥∇U∥L2(Br\Γ̃)

(∫
Br

|f̃ |U2 dx

) 1
2

≤ O
(
rε+ 2ε

N+2ε

)(∫
Br\Γ̃

(A∇U · ∇U − f̃U2) dy + 2
ηf (r)r

∫
∂Br

µU2 dS

) 1
2

×

×
(∫

Br\Γ̃
(A∇U · ∇U − f̃U2) dy + 2

r

∫
∂Br

µU2 dS

) 1
2

≤ O
(
rε+ 2ε

N+2ε

) ∫
Br\Γ̃

(A∇U · ∇U − f̃U2) dy +O
(
r−1+ε+ 2ε

N+2ε

) ∫
∂Br

µU2 dS.

Under assumptions (2.7), thanks to Remark 2.2.3 and (2.17),∫
∂Br

f̃U2 dS = O
(
r2ε−2

) ∫
∂Br

µU2 dS.

Collecting the above estimates, we conclude that (2.78), (2.79) and (2.80) follow from (2.74)or
(2.75) under hypotheses (2.6) or (2.7) respectively. From the Cauchy–Schwarz inequality we
also deduce that V ≥ 0 a.e. in (0, r0).

We now prove that N is bounded.

Proposition 2.3.11. There exists a constant C > 0 such that, for every r ∈ (0, r0],

N (r) ≤ C. (2.81)

Proof. By Proposition 2.3.10 there exists a constant κ > 0 such that, for a.e. r ∈ (0, r0),

(N + 1)′(r) ≥ W(r) ≥ −κ r−1+ 4ϵ
N+2ϵ (N (r) + 1).

Since N + 1 > 0 by (2.77) and the choice of r0 in (2.48), it follows that

(log(N + 1))′ ≥ −κr−1+ 4ϵ
N+2ϵ .

An integration over (r, r0) yields

N (r) ≤ −1 + exp
(
κ
N + 2ϵ

4ϵ r
4ϵ

2ϵ+N

0

)
(N (r0) + 1)

and the proof is thereby complete.
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Proposition 2.3.12. There exists the limit

γ := lim
r→0+

N (r). (2.82)

Furthermore γ is finite and γ ≥ 0.

Proof. From Proposition 2.3.10 and (2.81) there exists a constant κ > 0 such that

N ′(r) ≥ W(r) ≥ −κ r−1+ 4ϵ
N+2ϵ (N (r) + 1) ≥ −κ(C + 1)r−1+ 4ϵ

N+2ϵ for a.e. r ∈ (0, r0).

Then
d

dr

(
N (r) + κ(C + 1)(N + 2ϵ)

4ϵ r
4ϵ

N+2ϵ

)
≥ 0

for a.e. r ∈ (0, r0). We conclude that limr→0+ N (r) exists; moreover such a limit is finite
thanks to (2.81) and (2.77). Furthermore from (2.31) and (2.77) we deduce that γ ≥ 0.

The proofs of Propositions 2.3.13 and 2.3.14 are standard and we omit them, see for
example [47, Lemma 3.7, Lemma 4.6], [65, Lemma 5.6, Lemma 6.4], [65, Lemma 5.9, Lemma
6.6] or Propositions 4.4.9 and 4.4.10 in Chapter 4.

Proposition 2.3.13. There exists a constant α > 0 such that, for every r ∈ (0, r0],

H(r) ≤ α r2γ . (2.83)

Furthermore for every σ > 0 there exist ασ > 0 and rσ ∈ (0, r0) such that, for every r ∈ (0, rσ],

H(r) ≥ ασr
2γ+σ. (2.84)

Proof. For the proof in a similar situation we refer to [65, Lemma 5.6] and Proposition 4.4.9
in Chapter 4.

Proposition 2.3.14. The limit limr→0+ r−2γH(r) exists and is finite.

Proof. For the proof in a similar situation we refer to [65, Lemma 6.4] and Proposition 4.4.10
in Chapter 4.

From the properties of the height function H derived above, in particular from estimate
(2.84), we deduce the unique continuation property stated in Theorem 2.1.1.

Proof of Theorem 2.1.1. Let u be a weak solution to (2.1) such that u(x) = O(|x|k) as |x| →
0+ for all k ∈ N. To prove that u ≡ 0 in BR, we argue by contradiction and assume that
u ̸≡ 0. Then we can define a frequency function for U = u ◦F as in (2.58), (2.59) and (2.76).
Choosing k ∈ N such that k > γ + σ

2 , we would obtain that H(r) = O(r2k) = o(r2γ+σ) as
r → 0, contradicting estimate (2.84).

2.4 The blow-up analysis
In this section we perform a blow-up analysis for scaled solutions to (2.23). To this aim we
first study the spectrum of (2.8), which plays a crucial role in the classification of blow-up
profiles.
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2.4.1 Neumann eigenvalues on cracked sphere

In this section we study the spectrum of (2.8). We recall that µ ∈ R is an eigenvalue of (2.8)
if there exists ψ ∈ H1(SN−1 \ Σ) \ {0} such that∫

SN−1\Σ
∇SN−1\Σψ · ∇SN−1\ΣϕdS = µ

∫
SN−1\Σ

ψϕdS for any ϕ ∈ H1(SN−1 \ Σ). (2.85)

A Rellich-Kondrakov type theorem is needed to apply the classical Spectral Theorem to
problem (2.8).

Proposition 2.4.1. The embedding H1(SN−1 \ Σ) ↪→ L2(SN−1) is compact.

Proof. Let {ϕn}n∈N be a bounded sequence in H1(SN−1 \ Σ). We observe that SN−1
+ and

SN−1
− are smooth compact manifolds with boundary and that the sequences of restrictions{
ϕn

∣∣
SN−1

+

}
n∈N and

{
ϕn

∣∣
SN−1

−

}
n∈N are bounded in H1(SN−1

+ ) and H1(SN−1
− ) respectively. Then

we can extract a subsequence {ϕnk
}k∈N such that

{
ϕn

∣∣
SN−1

+

}
n∈N converges in L2(SN−1

+ ) by the
classical Rellich-Kondrakov Theorem on compact manifolds with boundary, see [18]. Proceed-
ing in the same way for

{
ϕnk

∣∣
SN−1

−

}
n∈N in H1(SN−1

− ), we conclude that there exists a subse-

quence {ϕnkh
}h∈N which converges both in L2(SN−1

− ) and in L2(SN−1
+ ), hence in L2(SN−1).

Proposition 2.4.2.

(i) The point spectrum of (2.8) is a diverging and increasing sequence of non-negative eigen-
values {µk}k∈N of finite multiplicity and the eigenvalue µ0 = 0 is simple. Letting Nk

be the multiplicity of µk and Vk be the eigenspace associated to µk, there exists an or-
thonormal basis of L2(SN−1) consisting of eigenfunctions {Yk,i}k∈N,i=1,...,Nk

such that
{Yk,i}i=1,...Nk

is a basis of Vk for any k ∈ N.

(ii) For any k ∈ N

µk = k(k + 2N − 4)
4 . (2.86)

Moreover any eigenfunction of (2.8) belongs to L∞(SN−1).

Proof. The proof of (i) follows from the classical Spectral Theorem for compact self-adjoint
operators, taking into account Proposition 2.4.1. We prove now (ii). If µ is an eigenvalue of

(2.8) and Ψ an associated eigenfunction, let σ := −N−2
2 +

√(
N−2

2

)2
+ µ and

W (rθ) := rσΨ(θ), for any r ∈ [0,∞), θ ∈ SN−1 \ Σ.

Since Ψ is an eigenfunction of (2.8) then W is harmonic on B1 \ Γ̃ and ∂+W
∂ν+ = ∂−W

∂ν− = 0 on Γ̃.
Therefore we deduce from [41] that there exists k ∈ N such that σ = k

2 and so µ = k(k+2N−4)
4 .

Moreover from [41] it also follows that W ∈ L∞(B1) hence Ψ ∈ L∞(SN−1).
Viceversa, if we let k ∈ N and define W in cylindrical coordinates as

W (x′, r cos(t), r sin(t)) := r
k
2 cos

(
kt

2

)
for any x′ ∈ RN−2, r ∈ [0,∞), and t ∈ [0, 2π],
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then W is harmonic on B1 \ Γ̃ and ∂+W
∂ν+ = ∂−W

∂ν− = 0 on Γ̃. Since W is homogeneous of degree
k/2, then

W (rθ) = r
k
2 Ψ(θ), for any r ∈ [0,∞), and θ ∈ SN−1 \ Σ,

where Ψ = W|SN−1 . Then from

r
k−4

2

(
k(k − 2)

4 Ψ(θ) + k(N − 1)
2 Ψ(θ) + ∆SN−1Ψ(θ)

)
= 0, r ∈ [0,∞), θ ∈ SN−1 \ Σ,

we deduce that Ψ solves (2.8) with µ = k(k+2N−4)
4 .

Remark 2.4.3. The traces of eigenfunctions of problem (2.8) on both sides of Σ (i.e. the
traces of restrictions to SN−1

+ and SN−1
+ ) cannot vanish identically.

Indeed, if an eigenfunction Ψ associated to the eigenvalue µk is such that the trace of
Ψ
∣∣
SN−1

+
on Σ vanishes, then the function W (x) := |x|k/2Ψ(x/|x|) would be a harmonic function

in RN \ Γ̃ satisfying both Dirichlet and Neumann homogeneous boundary conditions on the
upper side of the crack, thus violating classic unique continuation principles.

2.4.2 The blow-up analysis

Throughout this section we let u ∈ H1(BR \ Γ) be a non-trivial weak solution to (2.1) with
f satisfying either (2.6) or (2.7), U = u ◦ F ∈ H1(Br1 \ Γ̃) be the corresponding solution to
(2.23), r0 be as in (2.48) and r1 be as in Proposition 2.2.1. For all λ ∈ (0, r0), let

W λ(y) := U(λy)√
H(λ)

for any y ∈ Bλ−1r1 \ Γ̃. (2.87)

For any λ ∈ (0, r0) it is easy to verify that W λ ∈ H1(Bλ−1r1 \ Γ̃) and W λ satisfies∫
Bλ−1r1

\Γ̃
A(λy)∇W λ(y) · ∇ϕ(y) dy − λ2

∫
Bλ−1r1

f̃(λy)W λ(y)ϕ(y) dy = 0

for any ϕ ∈ H1
0,∂Bλ−1r1

(Bλ−1r1 \ Γ̃). In other words W λ is a weak solution of

− div(A(λ·)∇W λ) = λ2f̃(λ·)W λ, in Bλ−1r1 \ Γ̃,

A(λ·)∇+W λ · ν+ = A(λ·)∇−W λ · ν− = 0, on Γ̃,

for any λ ∈ (0, r0). Since B1 ⊂ Bλ−1r1 for all λ ∈ (0, r0), it follows that, for any λ ∈ (0, r0),∫
B1\Γ̃

A(λy)∇W λ(y) · ∇ϕ(y) dy − λ2
∫

B1
f̃(λy)W λ(y)ϕ(y) dy = 0, (2.88)

for any ϕ ∈ H1
0,∂B1

(B1 \ Γ̃). Furthermore by a change of variables, (2.87) and (2.58),∫
SN−1

µ(λθ)|W λ(θ)|2dS = 1 for every λ ∈ (0, r0). (2.89)

Proposition 2.4.4. Let W λ be as in (2.87). Then {W λ}λ∈(0,r0) is bounded in H1(B1 \ Γ̃).
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Proof. We have∫
B1\Γ̃

|∇W λ|2 dy = λ2−N

H(λ)

∫
Bλ\Γ̃

|∇U(y)|2 dy ≤ 2
1 − 2ηf̃ (λ)N (λ) +

4ηf̃ (λ)
1 − 2ηf̃ (λ) .

by (2.32). Then thanks to (2.81), (2.31), (2.48), (2.29), (2.17), and (2.89) we conclude.

The following proposition is a doubling type result.

Proposition 2.4.5. There exists a constant C1 > 0 such that for any λ ∈ (0, r0
2 ) and T ∈ [1, 2]

1
C1
H(Tλ) ≤ H(λ) ≤ C1H(Tλ), (2.90)

∫
BT

|W λ(y)|2dy ≤ 2NC1

∫
B1

|W T λ(y)|2 dy, (2.91)

and ∫
BT \Γ̃

|∇W λ(y)|2dy ≤ 2N−2C1

∫
B1\Γ̃

|∇W T λ(y)|2 dy. (2.92)

Proof. From (2.81), (2.77), (2.63), and (2.48) we deduce that there exist two constants κ1 > 0
and κ2 > 0 such that, for any r ∈ (0, r0),

−2
r

≤ −2ηf (r)
r

≤ H ′(r)
H(r) ≤ 2N (r) + κ1

r
≤ κ2

r
.

Then (2.90) follows from an integration in (λ, Tλ) of the above inequality. Furthermore from
(2.90) we obtain that, for any λ ∈ (0, r0

2 ) and T ∈ [1, 2],
∫

BT

|W λ(y)|2 dy = λ−N

H(λ)

∫
BλT

|U(y)|2 dy ≤ C12N

(λT )NH(Tλ)

∫
BλT

|U(y)|2 dy

= C12N
∫

B1
|W T λ(y)|2 dy.

In the same way (2.92) follows from (2.90).

Proposition 2.4.6. Let M be as in Proposition 2.3.7 and W λ be defined in (2.87). Then
there exist M > 0 and λ0 > 0 such that for any λ ∈ (0, λ0) there exists Tλ ∈ [1, 2] such that
λTλ ̸∈ M and ∫

∂BTλ

|∇W λ|2 dS ≤ M

∫
BTλ

\Γ̃
(|∇W λ|2 + |W λ|2) dy. (2.93)

Proof. Since {W λ}λ∈(0,r0/2) is bounded in H1(B2 \ Γ̃) by Proposition 2.4.4, (2.91) and (2.92),
then

lim sup
λ→0+

∫
B2\Γ̃

(|∇W λ|2 + |W λ|2) dy < +∞. (2.94)

By the Coarea formula, for any λ ∈ (0, r0
2 ) the function

gλ(r) :=
∫

Br\Γ̃
(|∇W λ|2 + |W λ|2) dy
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is absolutely continuous in [1, 2] with weak derivative

g′
λ(r) =

∫
∂Br

(|∇W λ|2 + |W λ|2) dS for a.e. r ∈ [1, 2],

where the integral
∫

∂Br
|∇W λ|2dS is meant in the sense of Remark 2.3.3. To prove the

statement we argue by contradiction. If the conclusion does not hold, for any M > 0 there
exists a sequence {λn}n∈N ⊂ (0, r0/2) such that limn→∞ λn = 0 and∫

∂Br

(|∇W λn |2 + |W λn |2) dS > M

∫
Br\Γ̃

(|∇W λn |2 + |W λn |2) dy

for any n ∈ N and r ∈ [1, 2] \ 1
λn

M, and hence for a.e. r ∈ [1, 2]. Hence

g′
λn

(r) > Mgλn(r) for any n ∈ N and a.e. r ∈ [1, 2].

An integration in [1, 2] yields

lim sup
n→∞

gλn(1) ≤ e−M lim sup
n→∞

gλn(2)

hence
lim inf
λ→0+

gλ(1) ≤ e−M lim sup
λ→0+

gλ(2).

In view of (2.94), letting M → ∞ we conclude that

lim inf
λ→0+

∫
B1\Γ̃

(|∇W λ|2 + |W λ|2) dy = 0.

Then there exists a sequence {ρn}k∈N such that W ρn → 0 strongly in H1(B1 \ Γ̃) as n → ∞.
Due to the continuity of the trace operator γ1 defined in Proposition 2.2.4 and (2.18), this is
in contradiction with (2.89).

Proposition 2.4.7. There exists M > 0 such that∫
SN−1

|∇W λTλ |2 dS ≤ M for all λ ∈
(

0,min
{
r0
2 , λ0

})
.

Proof. Since∫
SN−1

|∇W λTλ |2 dS = λ2T 3−N
λ

H(λTλ)

∫
∂BTλ

|∇U(λy)|2 dS = T 3−N
λ

H(λ)
H(λTλ)

∫
∂BTλ

|∇W λ|2 dS,

then, by (2.90), (2.91), (2.92), (2.93), and since 1 ≤ Tλ ≤ 2, for any λ ∈
(
0,min

{ r0
2 , λ0

})
we

have that ∫
SN−1

|∇W λTλ |2 dS ≤ 2C1M

∫
BTλ

\Γ̃
(|∇W λ|2 + |W λ|2) dy

≤ 2N+1C2
1M

∫
B1\Γ̃

(|∇W Tλλ|2 + |W Tλλ|2) dy.

Therefore we conclude thanks to Proposition 2.4.4.
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Thanks to the estimates established above, we can now prove a first blow-up result.

Proposition 2.4.8. Let u ∈ H1(BR \ Γ), u ̸≡ 0, be a non-trivial weak solution to (2.1),
with Γ defined in (2.2)–(2.3) and f satisfying either (2.6) or (2.7), and let U = u ◦ F be the
corresponding solution to (2.23). Let γ be as in (2.82). Then

there exists k0 ∈ N such that γ = k0
2 . (2.95)

For any sequence {λn}n∈N with limn→∞ λn = 0 there exists a subsequence {λnk
}k∈N and an

eigenfunction Ψ of problem (2.8) associated to the eigenvalue µk0 such that ∥Ψ∥L2(SN−1) = 1
and

U(λnk
y)√

H(λnk
)

→ |y|γΨ
(
y

|y|

)
strongly in H1(B1 \ Γ̃).

Proof. Let W λ be as in (2.87) for any λ ∈
(
0,min

{ r0
2 , λ0

})
and let us consider a sequence

{λn}n∈N such that limn→∞ λn = 0. From Proposition 2.4.4 {W λTλ : λ ∈
(
0,min

{ r0
2 , λ0

})
} is

bounded in H1(B1 \ Γ̃). Therefore there exists a subsequence {W λnk
Tλnk }k∈N ⊂ H1(B1 \ Γ̃)

and a function W ∈ H1(B1 \ Γ̃) such that W λnk
Tλnk ⇀ W weakly in H1(B1 \ Γ̃). By

compactness of the trace operator γ1 (see Proposition 2.2.4), (2.18), and (2.89), it follows
that ∫

∂B1
W 2 dS = 1 (2.96)

and so W ̸≡ 0 on B1 \ Γ̃.
By Hölder’s inequality and (2.30) we have that, for every ϕ ∈ H1(B1 \ Γ̃),∣∣∣∣λ2
∫

B1
f̃(λy)W λ(y)ϕ(y) dy

∣∣∣∣ ≤ λ2ηf̃(λ·)(1)

×
(∫

B1\Γ̃
|∇W λ|2 dy +

∫
∂B1

|W λ|2 dS
) 1

2
(∫

B1\Γ̃
|∇ϕ|2 dy +

∫
∂B1

ϕ2 dS

) 1
2

. (2.97)

By (2.31) and a change of variables we have that

λ2ηf̃(λ·)(1) = SN,qϵλ
2
(∫

B1
|f̃(λy)|

N
2 +ϵ dy

) 2
N+2ϵ

= SN,qϵλ
4ϵ

N+2ϵ ∥f̃∥
L

N
2 +ϵ(Bλ)

→ 0 as λ → 0+. (2.98)

From (2.97), (2.98), the boundedness of {W λ} in H1(B1 \Γ̃) (established in Proposition 2.4.4)
and of the traces (following from Proposition 2.2.4), we deduce that

lim
k→∞

λ2
λnk

Tλnk

∫
B1
f̃(λnk

Tλnk
y)W λnk

Tλnk (y)ϕ(y) dy = 0, (2.99)

for every ϕ ∈ H1(B1 \ Γ̃).
Let ϕ ∈ H1

0,∂B1
(B1 \ Γ̃). We can test (2.88) with ϕ to obtain∫

B1\Γ̃
A(λnk

Tλnk
y)∇W λnk

Tλnk (y) · ∇ϕ(y) dy

= (λnk
Tλnk

)2
∫

B1
f̃(λnk

Tλnk
y)W λnk

Tλnk (y)ϕ(y) dy, (2.100)
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for any k ∈ N. Since W λnk
Tλnk ⇀W weakly in H1(B1 \ Γ̃), by (2.15) we have that

lim
k→∞

∫
B1\Γ̃

A(λnk
Tλnk

y)∇W λnk
Tλnk (y) · ∇ϕ(y) dy =

∫
B1\Γ̃

∇W · ∇ϕdy. (2.101)

Therefore, for any ϕ ∈ H1
0,∂B1

(B1 \ Γ̃) we can pass to the limit as k → ∞ in (2.100) thus
obtaining, in view of (2.101) and (2.99),∫

B1\Γ̃
∇W · ∇ϕdy = 0,

i.e. W is a weak solution of 
−∆W = 0, on B1 \ Γ̃,
∂+W

∂ν+ = ∂−W

∂ν− = 0, on Γ̃.
(2.102)

We note that, by classical elliptic regularity theory, W is smooth in B1 \ Γ̃.
In view of (2.87) and Propositions 2.4.6 and 2.3.7, by scaling we have that, for every

ϕ ∈ H1(B1 \ Γ̃),∫
B1\Γ̃

A(λnk
Tλnk

y)∇W λnk
Tλnk (y) · ∇ϕ(y) dy

− (λnk
Tλnk

)2
∫

B1
f̃(λnk

Tλnk
y)W λnk

Tλnk (y)ϕ(y) dy

=
∫

∂B1
(A(λnk

Tλnk
y)∇W λnk

Tλnk (y) · ν)ϕ(y) dS. (2.103)

Thanks to Proposition 2.4.7 and (2.13) there exists a function h ∈ L2(∂B1) such that

(A(λnk
Tλnk

y)∇W λnk
Tλnk (y) · ν) ⇀ h weakly in L2(∂B1), (2.104)

up to a subsequence. By the weak convergence W λnk
Tλnk ⇀W in H1(B1 \ Γ̃), (2.15), (2.99),

and (2.104), passing to the limit as k → ∞ in (2.103), we obtain that∫
B1\Γ̃

∇W · ∇ϕdy =
∫

∂B1
hϕ dS (2.105)

for any ϕ ∈ H1(B1 \ Γ̃). From the compactness of the trace operator γ1 (see Proposition
2.2.4) and (2.104) it follows that

lim
k→∞

∫
∂B1

(A(λnk
Tλnk

y)∇W λnk
Tλnk (y) · ν)W λnk

Tλnk (y) dS =
∫

∂B1
hW dS.

Therefore, recalling estimates (2.97), (2.98), and the boundedness of {W λ} in H1(B1 \ Γ̃),
choosing ϕ = W

λnk
Tλnk in (2.103) and passing to the limit as k → ∞, we obtain that

lim
k→∞

∫
B1\Γ̃

A(λnk
Tλnk

y)∇W λnk
Tλnk · ∇W λnk

Tλnk dy =
∫

∂B1
hW dS. (2.106)
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From (2.105) and (2.106) it follows that

lim
k→∞

∫
B1\Γ̃

A(λnk
Tλnk

y)∇W λnk
Tλnk · ∇W λnk

Tλnk dy =
∫

B1\Γ̃
|∇W |2 dy

and so, thanks to (2.15),

W
λnk

Tλnk → W strongly in H1(B1 \ Γ̃). (2.107)

For any k ∈ N and r ∈ (0, 1) let us define

Dk(r) := r2−N
∫

Br\Γ̃
(A(λnk

Tλnk
y)∇W λnk

Tλnk ·∇W λnk
Tλnk

− (λnk
Tλnk

)2f̃(λnk
Tλnk

y)|W λnk
Tλnk |2) dy,

Hk(r) := r1−N
∫

∂Br

µ(λnk
Tλnk

y)|W λnk
Tλnk |2 dS, and Nk(r) := Dk(r)

Hk(r) .

By a change of variables it is easy to verify that, for any r ∈ (0, 1),

Nk(r) = Dk(r)
Hk(r) =

D(λnk
Tλnk

r)
H(λnk

Tλnk
r) = N (λnk

Tλnk
r). (2.108)

For any r ∈ (0, 1), we also define

HW (r) := r1−N
∫

∂Br

|W |2 dS, DW (r) := r2−N
∫

Br\Γ̃
|∇W |2 dy and NW (r) := DW (r)

HW (r) .

The definition of NW is well posed. Indeed, if HW (r) = 0 for some r ∈ (0, 1), then we may
test the equation (2.102) on Br with W and conclude that W = 0 in Br. Thanks to classical
unique continuation principles for harmonic functions, this would imply that W = 0 in B1,
thus contradicting (2.96).

Thanks to (2.107), (2.97)-(2.98) together with the boundedness of {W λ} in H1(B1 \ Γ̃),
(2.15), (2.18), and Proposition 2.3.12, passing to the limit as k → ∞ in (2.108) we obtain
that

NW (r) = lim
k→∞

Nk(r) = lim
k→∞

N (λnk
Tλnk

r) = γ for any r ∈ (0, 1). (2.109)

Then NW is constant in (0, 1). Following the proof of Proposition 2.3.10 in the case f ≡ 0
and g ≡ 0 (where g is the function defined in (2.4)–(2.5)), so that A = IdN and µ = 1, we
obtain that

0 = N ′
W (r) ≥

2r
((∫

∂Br

∣∣∣∂W
∂ν

∣∣∣2 dS)(∫∂Br
W 2dS

)
−
(∫

∂Br
W ∂W

∂ν dS
)2
)

(∫
∂Br

W 2 dS
)2 ≥ 0

for a.e. r ∈ (0, 1). It follows that
(∫

∂Br

∣∣∣∂W
∂ν

∣∣∣2 dS)(∫∂Br
W 2dS

)
=
(∫

∂Br
W ∂w

∂ν dS
)2

for a.e.

r ∈ (0, 1), i.e. equality holds in the Cauchy-Schwartz inequality for the vectors W and ∂W
∂ν in

L2(∂Br) for a.e. r ∈ (0, 1). It follows that there exists a function ζ(r) such that

∂W

∂ν
(rθ) = ζ(r)W (rθ) for any θ ∈ SN−1 \ Σ and a.e. r ∈ (0, 1]. (2.110)
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Multiplying by W (rθ) and integrating on SN−1 we obtain∫
SN−1

∂W

∂ν
(θr)W (rθ) dS = ζ(r)

∫
SN−1

W 2(θr) dS,

so that ζ(r) = H′
W (r)

2HW (r) = γ
r by Proposition 2.3.2 and (2.109). Integrating (2.110) between

r ∈ (0, 1) and 1 we obtain that

W (rθ) = rγW (1θ) = rγΨ(θ) for any θ ∈ SN−1 \ Σ and any r ∈ (0, 1],

where Ψ = W |SN−1\Σ. Then Ψ ∈ H1(SN−1 \Σ); furthermore, substituting W (rθ) = rγΨ(θ) in
(2.102) we find out that Ψ is an eigenfunction of (2.8) with (γ+N−2)γ as an associated eigen-
value. Hence by Proposition 2.4.2 there exists k0 ∈ N such that (γ +N − 2)γ = k0(k0+2N−4)

4 .
Recalling from Proposition 2.3.12 that γ ≥ 0, we then obtain (2.95).

To conclude the proof it is enough to show that W λnk → W strongly in H1(B1 \ Γ̃)
(possibly along a subsequence). Since {W λnk }k∈N is bounded in H1(B1 \ Γ̃) by Proposition
2.4.4, there exists a function W̃ ∈ H1(B1 \ Γ̃) and T ∈ [1, 2] such that W λnk ⇀ W̃ weakly in
H1(B1 \ Γ̃) and Tλk

→ T , up to a subsequence.
Moreover, since {W λnk

Tλnk }k∈N and {|∇W λnk
Tλnk |}k∈N converge strongly in L2(B1) by

(2.107), they are dominated by a measurable L2(B1)-function, up to a subsequence. Similarly,
thanks to (2.90), we can suppose that, up to a subsequence, the limit

ζ := lim
k→∞

H(λnk
Tλnk

)
H(λnk

)

exists and it is finite and strictly positive. Then for any ϕ ∈ C∞
c (B1) we have that

lim
k→∞

∫
B1
W λnk (y)ϕ(y) dy = lim

k→∞
TN

λnk

∫
B

T −1
λnk

W λnk (Tλnk
y)ϕ(Tλnk

y) dy

= lim
k→∞

TN
λnk

√
H(λnk

Tλnk
)

H(λnk
)

∫
B

T −1
λnk

W
Tλnk

λnk (y)ϕ(Tλnk
y) dy

= TN
√
ζ

∫
BT −1

W (y)ϕ(Ty) dy =
√
ζ

∫
B1
W (y/T )ϕ(y) dy,

thanks to the Dominated Convergence Theorem. By density the same holds for any ϕ ∈
L2(B1). It follows that W λnk ⇀

√
ζW (·/T ) weakly in L2(B1). Hence, by uniqueness of the

weak limit, we have that W̃ (·) =
√
ζW (·/T ) and W λnk ⇀

√
ζW (·/T ) weakly in H1(B1 \ Γ̃).

Furthermore

lim
k→∞

∫
B1\Γ̃

|∇W λnk (y)|2 dy = lim
k→∞

TN
λnk

∫
B

T −1
λnk

\Γ̃
|∇W λnk (Tλnk

y)|2 dy

= lim
k→∞

TN−2
λnk

H(λnk
Tλnk

)
H(λnk

)

∫
B

T −1
λnk

\Γ̃
|∇W Tλnk

λnk (y)|2dy

= TN−2ζ

∫
BT −1 \Γ̃

|∇W (y)|2dy =
∫

B1\Γ̃
|
√
ζ∇(W (·/T ))|2 dy.
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Then we can conclude that W λnk → W̃ =
√
ζW (·/T ) strongly in H1(B1 \ Γ̃). Moreover, by

compactness of the trace operator γ1 (see Proposition 2.2.4), (2.18), and (2.89), we deduce
that

∫
∂B1

W̃ 2 dS = 1. Then, since W (rθ) = r
k0
2 Ψ(θ), we deduce that

W̃ (rθ) =
√
ζW

(
r

T
θ

)
=
(

ζ

T k0

) 1
2
r

k0
2 Ψ(θ) =

(
ζ

T k0

) 1
2
W (rθ)

and
1 =

∫
∂B1

W̃ 2 dS = ζ

T k0

∫
∂B1

W 2 dS = ζ

T k0
,

thanks to (2.96). Therefore W = W̃ and the proof is complete.

We are now in position of prove Theorem 2.1.2.

Proof of Theorem 2.1.2. Let us assume that Tr+
Γ u(z) = O(|z|k) as |z| → 0+, z ∈ Γ, for

all k ∈ N (a similar argument works under the assumption Tr−
Γ u(z) = O(|z|k)). Letting

U = u ◦F , by the properties of the diffeomorphism F described in Proposition 2.2.1, we have
that Tr+

Γ̃ U(z) = O(|z|k) as |z| → 0+, so that, for all k ∈ N,

∥λ−k Tr+
Γ̃ U(λ·)∥L2(B1∩Γ̃) → 0 as λ → 0+. (2.111)

On the other hand, if, by contradiction, u ̸≡ 0, by Proposition 2.4.8 and classical trace
theorems there exist k0 ∈ N, a sequence λn → 0+, and an eigenfunction Ψ of problem (2.8)
such that

lim
n→∞

∥ Tr+
Γ̃ U(λn·)∥L2(B1∩Γ̃)√

H(λn)
=
∥∥∥Tr+

Γ̃

(
|y|γΨ

(
y

|y|

))∥∥∥
L2(B1∩Γ̃)

̸= 0, (2.112)

where the above limit is nonzero thanks to Remark 2.4.3. Combining (2.111) and (2.112) we
obtain that

lim
n→∞

√
H(λn)
λk

n

= 0 for all k ∈ N,

thus contradicting estimate (2.84).

2.5 Asymptotics of the height function
In dimension N ≥ 3, we can further specify the behaviour of U(λ·) as λ → 0+, deriving
the asymptotics of the function H(λ) appearing as a normalization factor in the blowed-up
family (2.87). Let {Yk,i}k∈N,i=1,...,Nk

be the basis of L2(SN−1) given by Proposition 2.4.2. Let
N ≥ 3, u ∈ H1(BR \ Γ) be a weak solution to (2.1), with Γ defined in (2.2)–(2.3) and f
satisfying either (2.6) or (2.7), and let U = u ◦F be the corresponding solution to (2.23). For
any λ ∈ (0, r0), k ∈ N and i = 1, . . . , Nk we define

φk,i(λ) :=
∫
SN−1

U(λθ)Yk,i(θ) dS (2.113)

and

Υk,i(λ) := −
∫

Bλ\Γ̃
(A− IdN )∇U · ∇SN−1Yk,i(y/|y|)

|y|
dy

+
∫

Bλ

f̃(y)U(y)Yk,i(y/|y|) dy +
∫

∂Bλ

(A− IdN )∇U · y

|y|
Yk,i(y/|y|) dS. (2.114)
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Proposition 2.5.1. Let k0 be as in Proposition 2.4.8. Then, for any i = 1, . . . , Nk0 and
r ∈ (0, r0],

φk0,i(λ) = λ
k0
2
(
r− k0

2 φk0,i(r) + 2N + k0 − 4
2(N + k0 − 2)

∫ r

λ
s−N+1− k0

2 Υk0,i(s) ds

+ k0r
−N+2−k0

2(N + k0 − 2)

∫ r

0
s

k0
2 −1Υk0,i(s) ds

)
+ o(λ

k0
2 ) as λ → 0+. (2.115)

Proof. For any k ∈ N and any i = 1, . . . , Nk we consider the distribution ζk,i on (0, r0) defined
as

D′(0,r0)⟨ζk,i, ω⟩D(0,r0) :=
∫ r0

0
ω(λ)

(∫
SN−1

f̃(λθ)U(λθ)Ym,k(θ) dSθ

)
dλ

−
∫

Br0 \Γ̃
(A− IdN )∇U · ∇

(
|y|1−Nω(|y|)Ym,k(y/|y|)

)
dy,

for any ω ∈ D(0, r0).
Since Υk,i ∈ L1

loc(0, r0) by (2.114), we may consider its derivative in the sense of distribu-
tions. A direct calculation shows that

Υ′
k,i(λ) = λN−1ζk,i(λ) (2.116)

in the sense of distributions on (0, r0). From the definition of ζk,i, (2.23), and the fact that
Yk,i is a solution of (2.85) we deduce that

−φ′′
k,i(λ) − N − 1

λ
φ′

k,i(λ) + µk

λ2φk,i(λ) = ζk,i(λ)

in the sense of distribution in (0, r0); the above equation can be rewritten as

−(λN−1+k(λ− k
2φk,i(λ))′)′ = λN−1+ k

2 ζk,i(λ),

thanks to (2.86). Integrating the right-hand side of the equation above by parts, since (2.116)
holds, we obtain that, for every r ∈ (0, r0), k ∈ N and i = 1, . . . , Nk there exists a constant
ck,i(r) such that

(λ− k
2φk,i(λ))′ = −λ−N+1− k

2 Υk,i(λ) − k

2λ
−N+1−k

(
ck,i(r) +

∫ r

λ
s

k
2 −1Υk,i(s) ds

)
in the sense of distribution on (0, r0). Then φk,i(λ) ∈ W 1,1

loc (0, r0) and a further integration
yields

φk,i(λ) = λ
k
2

(
r− k

2φk,i(r) +
∫ r

λ
s−N+1− k

2 Υk,i(s) ds
)

+ k

2λ
k
2

(∫ r

λ
s−N+1−k

(
ck,i(r) +

∫ r

s
t

k
2 −1Υk,i(t) dt

)
ds

= λ
k
2

(
r− k

2φk,i(r) + 2N + k − 4
2(N + k − 2)

∫ r

λ
s−N+1− k

2 Υk,i(s) ds
)

− λ
k
2
kck,i(r)r−N+2−k

2(N + k − 2) + kλ−N+2− k
2

2(N + k − 2)

(
ck,i(r) +

∫ r

λ
t

k
2 −1Υk,i(t) dt

)
. (2.117)
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Now we claim that, if k0 is as in Proposition 2.4.8, then

the function s → s−N+1− k0
2 Υk0,i(s) belongs to L1(0, r0). (2.118)

To this end we will estimate each terms in (2.114). Thanks to (2.15), Hölder’s inequality, a
change of variables and Proposition 2.4.4, we have that∣∣∣∣∣

∫
Bs\Γ̃

(A− IdN )∇U · ∇SN−1Yk0,i(y/|y|)
|y|

dy

∣∣∣∣∣ ≤ const
∫

Bs\Γ̃
|y||∇U | |∇SN−1Yk0,i(y/|y|)|

|y|
dy

≤ const
(∫

Bs\Γ̃
|∇U |2dy

) 1
2
(∫

Bs\Γ̃
|∇SN−1Yk0,i(y/|y|)|2dy

) 1
2

≤ const s
N−2

2 s
N
2

√
H(s)

(∫
B1\Γ̃

|∇W s(y)|2 dy
) 1

2

≤ const sN−1
√
H(s).

From Hölder’s inequality, (2.30), (2.17), and Proposition 2.4.4 it follows that∣∣∣∣∫
Bs

f̃(y)U(y)Yk0,i(y/|y|) dy
∣∣∣∣ ≤

(∫
Bs

|f̃(y)|U2(y) dy
) 1

2
(∫

Bs

|f̃(y)|Y 2
k0,i(y/|y|) dy

) 1
2

≤ const s
4ϵ

N+2ϵ

(∫
Bs\Γ̃

|∇U |2 dy + sN−2H(s)
) 1

2
(∫

Bs\Γ̃
|∇Yk0,i(y/|y|)|2 dy + sN−2

) 1
2

≤ const s(N−2)+ 4ϵ
N+2ϵ

√
H(s).

Furthermore, in view of (2.15), for a.e. s ∈ (0, r0) we have that∣∣∣∣∫
∂Bs

(A− IdN )∇U · y

|y|
Yk0,i(y/|y|) dS

∣∣∣∣ ≤ const s
∫

∂Bs

|∇U ||Yk0,i(y/|y|)| dS

and an integration by parts and Hölder’s inequality yield, for any r ∈ (0, r0],∫ r

0
s−N+2− k0

2

(∫
∂Bs

|∇U ||Yk0,i(y/|y|)| dS
)
ds = r−N+2− k0

2

∫
Br\Γ̃

|∇U ||Yk0,i(y/|y|)|

+
(
N − 2 + k0

2

)∫ r

0
s−N+1− k0

2

(∫
Bs\Γ̃

|∇U ||Yk0,i(y/|y|)| dS
)
ds

≤ const
(
r1− k0

2

√
H(r) +

∫ r

0
s− k0

2

√
H(s) ds

)
,

reasoning as above. In conclusion, combining the above estimates with (2.95) and (2.83), we
obtain that, for any r ∈ (0, r0],∫ r

0
s−N+1− k0

2 |Υk0,i(s)| ds ≤ const
(
r1− k0

2

√
H(r) +

∫ r

0
s− k0

2 −1+ 4ϵ
N+2ϵ

√
H(s) ds

)
(2.119)

≤ const
(
r +

∫ r

0
s

2ϵ−N
N+2ϵ ds

)
≤ const r

4ϵ
N+2ϵ

which in particular implies (2.118). By (2.118), it follows that, for every r ∈ (0, r0],

λ
k0
2

(
r− k0

2 φk0,i(r) + 2N + k0 − 4
2(N + k0 − 2)

∫ r

λ
s−N+1− k0

2 Υk0,i(s) ds− k0ck0,i(r)r−N+2−k0

2(N + k0 − 2)

)

= O

(
λ

k0
2

)
= o

(
λ−N+2− k0

2

)
as λ → 0+ (2.120)
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and s → s
k0
2 −1Υk0,i(s) belongs to L1(0, r0).

Next we show that for every r ∈ (0, r0)

ck0,i(r) +
∫ r

0
t

k0
2 −1Υk0,i(t) dt = 0. (2.121)

We argue by contradiction assuming that there exists r ∈ (0, r0) such that (2.121) does not
hold. Then by (2.117) and (2.120)

φk0,i(λ) ∼ k0λ
−N+2− k0

2

2(N + k0 − 2)

(
ck0,i(r) +

∫ r

λ
t

k0
2 −1Υk0,i(t) dt

)
as λ → 0+. (2.122)

From Hölder’s inequality, a change of variables, and (2.28)∫ r0

0
λN−3|φk0,i(λ)|2 dλ ≤

∫ r0

0
λN−3

(∫
SN−1

|U(λθ)|2dS
)
dλ =

∫
Br0

|U |2

|y|2
dy < +∞

thus contradicting (2.122). Hence (2.121) is proved.
Furthermore from (2.119) and (2.121)∣∣∣∣λ−N+2− k0

2

(
ck0,i(r) +

∫ r

λ
t

k0
2 −1Υk0,i(t) dt

)∣∣∣∣ = λ−N+2− k0
2

∣∣∣∣∣
∫ λ

0
t

k0
2 −1Υk0,i(t) dt

∣∣∣∣∣ (2.123)

≤ λ−N+2− k0
2

∫ λ

0
tN−2+k0

∣∣∣∣t−N+1− k0
2 Υk0,i(t)

∣∣∣∣ dt
≤ λ

k0
2

∫ λ

0

∣∣∣∣t−N+1− k0
2 Υk0,i(t)

∣∣∣∣ dt = O

(
λ

4ϵ
N+2ϵ

+ k0
2

)
as λ → 0+.

Then the conclusion follows form (2.117), (2.121), and (2.123).

Proposition 2.5.2. Let γ be as in (2.82). Then

lim
r→0+

r−2γH(r) > 0.

Proof. For any λ ∈ (0, r0) the function U(λ·) belongs to L2(SN−1). Then we can expand it
in Fourier series respect to the basis {Yk,i}k∈N,i=1,...,Nk

introduced in Proposition 2.4.2:

U(λ ·) =
∞∑

k=0

Nk∑
i=1

φk,i(λ)Yk,i in L2(SN−1),

where we have defined φk,i(λ) in (2.113) for any k ∈ N and any i = 1, . . . , Nk. From (2.18),
a change of variables and the Parseval identity

H(λ) = (1 +O(λ))
∫
SN−1

U2(λθ) dS = (1 +O(λ))
∞∑

k=0

Nk∑
i=1

|φk,i(λ)|2. (2.124)

We argue by contradiction assuming that limr→0+ r2γH(r) = 0. Then by (2.124), letting k0
be as in (2.95),

lim
λ→0+

λ− k0
2 φk0,i(λ) = 0 for any i = 1, . . . , Nk0 .
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From (2.115) it follows that

r− k0
2 φk0,i(r) + 2N + k0 − 4

2(N + k0 − 2)

∫ r

0
s−N+1− k0

2 Υk0,i(s) ds

+ k0r
−N+2−k0

2(N + k0 − 2)

∫ r

0
s

k0
2 −1Υk0,i(s) ds = 0 (2.125)

for any r ∈ (0, r0) and any i = 1, . . . , Nk0 .
In view of (2.87), (2.113), (2.119), and (2.123), (2.125) implies that√

H(λ)
∫
SN−1

W λYk0,i dS = φk0,i(λ) = O
(
λ

4ϵ
N+2ϵ

+ k0
2
)

as λ → 0+ (2.126)

for all i = 1, . . . , Nk0 . From (2.84) with σ = 4ϵ
N+2ϵ we have that

√
H(λ) ≥

√
α 4ϵ

N+2ϵ
λ

k0
2 + 2ϵ

N+2ϵ

in a neighbourhood of 0, so that (2.126) implies that∫
SN−1

W λYk0,i dS = O
(
λ

2ϵ
N+2ϵ

)
= o(1) as λ → 0+

for all i = 1, . . . , Nk0 .
On the other hand, by Proposition 2.4.8 and continuity of the trace map γ1 (see Proposi-

tion 2.2.4), for every sequence λn → 0+, there exist a subsequence {λnk
} and Ψ ∈ span{Yk0,i :

m = i, . . . , Nk0} such that

∥Ψ∥L2(SN−1) = 1 and W λnk → Ψ in L2(SN−1).

From (2.5) and (2.5) it follows that

0 = lim
k→∞

∫
SN−1

W λnk Ψ dS = ∥Ψ∥2
L2(SN−1) = 1,

thus reaching a contradiction.

We are now ready to prove he following result, which is a more complete version of
Theorem 2.1.3.

Theorem 2.5.3. Let N ≥ 3 and let u ∈ H1(BR \ Γ) be a non-trivial weak solution to (2.1),
with Γ defined in (2.2)–(2.3) and f satisfying either assumption (2.6) or assumption (2.7).
Then there exists k0 ∈ N such that, letting N be as in Section 2.3,

lim
r→0+

N (r) = k0
2 . (2.127)

Moreover if Nk0 is the multiplicity of the eigenvalue µk0 of problem (2.8) and {Yk0,i}i=1,...,Nk0

is a L2(SN−1)-orthonormal basis of the eigenspace associated to µk0, then

λ− k0
2 u(λ·) → Φ and λ1− k0

2
(
∇BR\Γu

)
(λ·) → ∇RN \Γ̃Φ in L2(B1) as λ → 0+, (2.128)

where

Φ =
Nk0∑
i=1

αiYk0,i

(
y

|y|

)
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(α1, . . . , αNk0
) ̸= (0, . . . , 0) and, for all i ∈ {1, 2, . . . , Nk0},

αi = r−k0/2
∫
SN−1

u(F (rθ))Yk0,i(θ) dS

+ 1
2 −N − k0

∫ r

0

2 −N − k0
2

sN+ k0
2 −1

− k0s
k0
2 −1

2rN−2+k0

Υk0,i(s) ds (2.129)

for any r ∈ (0, r0) for some r0 > 0, where we have defined Υk0,i in (2.114) and F is the
diffeomorphism introduced in Proposition 2.2.1.

Proof. (2.127) directly comes from (2.95). Let U = u ◦ F and {λn}n∈N be a sequence such
that limn→∞ λn = 0+. By Proposition 2.4.8 and Proposition 2.5.2 there exist a subsequence
{λnk

}k∈N and constants α1, . . . , αNk0
such that (α1, . . . , αNk0

) ̸= (0, . . . , 0) and

λ
− k0

2
nk U(λnk

y) → |y|
k0
2

Nk0∑
i=1

αiYk0,i

(
y

|y|

)
in H1(B1 \ Γ̃) as k → ∞.

Now we show that the coefficients α1, . . . , αNk0
do not depend on {λn}n∈N nor on its subse-

quence {λnk
}k∈N. Thanks to the continuity of the trace operator γ1 introduced in Proposition

2.2.4

λ
− k0

2
nk U(λnk

·) →
Nk0∑
i=1

αiYk0,i in L2(SN−1) as k → ∞

and therefore, letting φk0,i be as in (2.113) for any i = 1, . . . , Nk0 ,

lim
k→∞

λ− k0
2 φk0,i(λnk

) = lim
k→∞

∫
SN−1

λ−k0/2
nk

U(λnk
θ)Yk0,i(θ) dS =

Nk0∑
j=1

αj

∫
SN−1

Yk0,jYk0,i dS = αi.

On the other hand by (2.115)

lim
k→∞

λ− k0
2 φk0,i(λnk

) = r− k0
2 φk0,i(r) + 2N + k0 − 4

2(N + k0 − 2)

∫ r

0
s−N+1− k0

2 Υk0,i(s) ds

+ k0r
−N+2−k0

2(N + k0 − 2)

∫ r

0
s

k0
2 −1Υk0,i(s) ds,

for all i = 1, . . . , Nk0 and r ∈ (0, r0], where we have defined Υk0,i in (2.114). We deduce that

αi = r− k0
2 φk0,i(r) + 2N + k0 − 4

2(N + k0 − 2)

∫ r

0
s−N+1− k0

2 Υk0,i(s) ds

+ k0r
−N+2−k0

2(N + k0 − 2)

∫ r

0
s

k0
2 −1Υk0,i(s) ds (2.130)

and so αi does not depend on {λn}n∈N nor on its subsequence {λnk
}k∈N thus implying that

λ− k0
2 U(λy) → |y|

k0
2

Nk0∑
i=1

αiYk0,i

(
y

|y|

)
in H1(B1 \ Γ̃) as λ → 0+. (2.131)

50



To prove (2.128) we note that

λ− k0
2 u(λx) = λ− k0

2 U(λGλ(x)), ∇
(
λ− k0

2 u(λx)
)

= ∇
(
λ− k0

2 U(λx)
)

(Gλ(x))JGλ
(x),

where Gλ(x) = 1
λF

−1(λx) and F is the diffeomorphism introduced in Proposition 2.2.1. We
also have by Proposition 2.2.1 that

Gλ(x) = x+O(λ) and JG(x) = IdN +O(λ)

as λ → 0+ uniformly respect to x ∈ B1. Then from (2.131) we deduce (2.128) and (2.129)
follows from (2.130) and (2.113).
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Chapter 3

A regularity result for some
singular or degenerate elliptic
equations

3.1 Weighted Sobolev Spaces
In this section we recall some results about weighted Sobolev Spaces and fix some notations
that we will use in Chapters 3, 4, 5, and 6.

Let s ∈ (0, 1), N ∈ N, N > 2s and z = (x, y) ∈ RN × [0,∞). Let

RN+1
+ := RN × (0,∞),

and, for any r > 0,

B+
r := {z ∈ RN+1

+ : |z| < r}, B′
r = {x ∈ RN : |x| < r},

S+
r := {z ∈ RN+1

+ : |z| = r}, S′
r := {x ∈ RN : |x| = r}.

For any p ∈ [1,∞) and any open set E ⊂ RN+1
+ , let

Lp(E, y1−2s) :=
{
V : E → R measurable :

∫
E
y1−2s|V |p dz < +∞

}
.

For any Lipschitz open set E ⊂ RN+1 and ϕ ∈ C∞(E) we define

∥ϕ∥H1(E,y1−2s) :=
(∫

B+
r

y1−2s(ϕ2 + |∇ϕ|2) dz
) 1

2
(3.1)

and H1(E, y1−2s) as the completion of C∞(E) with respect to the norm defined in (3.1).
Thanks to [93, Theorem 11.11, Theorem 11.2, 11.12 Remarks (iii)], for any r > 0, the space
H1(E, y1−2s) can be explicitly characterized as

H1(E, y1−2s) =
{
w ∈ W 1,1

loc (E) :
∫

B+
r

y1−2s(w2 + |∇w|2) dz < +∞
}
.

Finally, for any r > 0 we define the space

H1
0,S+

r
(B+

r , y
1−2s) := {ϕ ∈ C∞(B+

r ) : ϕ = 0 on S+
r }

∥·∥
H1(B+

r ,y1−2s)
. (3.2)
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We observe that H1(B+
r , y

1−2s) ⊂ W 1,1(B+
r ), hence, denoting as Tr the classical trace

operator from W 1,1(B+
r ) to L1(B′

r), we may consider its restriction to H1(B+
r , y

1−2s); fur-
thermore, for any r > 0, such a restriction (still denoted as Tr) turns out to be a linear,
continuous trace operator

Tr : H1(B+
r , y

1−2s) → Hs(B′
r) (3.3)

which is onto, see [29, 101], [89, Proposition 2.1], and [106, Theorem 2.8], where Hs(B′
r)

denotes the usual fractional Sobolev space.
Furthermore, denoting as Tr1 the classical trace operator from W 1,1(B+

r ) to L1(S+
r ), we

can consider its restriction to H1(B+
r , t

1−2s), still denoted as Tr1; from [111, Theorem 19.7]
and the Divergence Theorem one can easily deduce the following proposition.

Proposition 3.1.1. For any r > 0 there exists a linear, continuous, compact trace operator

Tr1 : H1(B+
r , y

1−2s) → L2(S+
r , y

1−2s). (3.4)

For the sake of simplicity we will always denote Tr1(w) with w for any w ∈ H1(B+
r , y

1−2s).

Proposition 3.1.2. [60, Lemma 2.6] There exists a constant SN,s > 0 such that, for any
r > 0 and w ∈ H1(B+

r , y
1−2s),

(∫
B′

r

|w|2∗
s dx

) 2
2∗

s

≤ SN,s

(∫
B+

r

y1−2s|∇w|2 dz + N − 2s
2r

∫
S+

r

y1−2sw2 dS

)
, (3.5)

where 2∗
s = 2N

N−2s .

We recall the following Hardy-type inequality with boundary terms from [60, Lemma 2.4].

Proposition 3.1.3. For any r > 0 and any w ∈ H1(B+
r , y

1−2s)

(
N − 2s

2

)2 ∫
B+

r

y1−2s |w(z)|2

|z|2
dz

≤
∫

B+
r

y1−2s
(

∇w · z

|z|

)2
dz +

(
N − 2s

2r

)∫
S+

r

y1−2sw2 dS. (3.6)

The following Poincaré-type inequality directly follows from (3.6): for all r > 0 and
w ∈ H1(B+

r , y
1−2s)∫

B+
r

y1−2sw2 dz ≤ 4r
(N − 2s)2

(
r

∫
B+

r

y1−2s|∇w|2 dz + N − 2s
2

∫
S+

r

y1−2sw2 dS

)
. (3.7)

Remark 3.1.4. As a consequence of (3.7) and by continuity of the trace operator (3.4), for
every r > 0 (∫

S+
r

y1−2sw2 dS +
∫

B+
r

y1−2s|∇w|2 dz
)1/2

is an equivalent norm on H1(B+
r , y

1−2s).
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For any i = 1, . . . , N+1, let ei = (δi,j)j=1,...,N+1 ∈ RN+1 be the vector with i-th component
equal to 1 and all the remaining components equal to 0.

It is well known that, if w ∈ W 1,p(Ω) with Ω ⊂ RN+1 open and p ∈ [1,∞), then, for any
i = 1, . . . , N + 1 and k ∈ R,∫

Ωk,i

|u(x+ kei) − u(x)|p

|k|p
≤
∫

Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p dx < +∞,

where Ωk,i := {x ∈ Ω : x + τkei ∈ Ω for any τ ∈ [0, 1]}, see e.g. [98, Theorem 10.55]. We
prove below an analogous result for the weighted space H1(B+

r , y
1−2s).

Lemma 3.1.5. For any r > 0, w ∈ H1(B+
r , y

1−2s), i = 1, . . . , N , and k ∈ R∫
B+

r,k,i

y1−2s |w(z + kei) − w(z)|2

|k|2
dz ≤

∫
B+

r

y1−2s

∣∣∣∣ ∂w∂xi

∣∣∣∣2 dz, (3.8)

where B+
r,k,i := {z ∈ B+

r : z + τkei ∈ B+
r for any τ ∈ [0, 1]}.

Proof. For a.e. z ∈ B+
r,k,i, by the absolute continuity of Sobolev functions on lines,

|w(z + kei) − w(z)| =
∣∣∣∣∫ 1

0

d

dτ
w(z + τkei)dτ

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣ ∂w∂xi
(z + τkei)

∣∣∣∣ |k| dτ.

Multiplying by y1−2s and integrating on B+
r,k we obtain, by Cauchy-Schwarz’s inequality and

Fubini-Tonelli’s Theorem,

∫
B+

r,k,i

y1−2s |w(z + kei) − w(z)|2

|k|2
dz

≤
∫

B+
r,k,i

y1−2s

(∫ 1

0

∣∣∣∣ ∂w∂xi
(z + τkei)

∣∣∣∣2 dτ
)
dz ≤

∫
B+

r

y1−2s

∣∣∣∣ ∂w∂xi

∣∣∣∣2 dz
which proves (3.8).

We refer to [60] for the following result, which can be deduced from [111, Theorem 19.7].

Lemma 3.1.6. Let Tr be the trace operator introduced in (3.3). Then

(i) For any r > 0, f ∈ C0,1(B+
r ) and w ∈ H1(B+

r , y
1−2s),

Tr(fw) = f(·, 0) Tr(w). (3.9)

(ii) For any r > 0, u ∈ H1(B+
r , y

1−2s) and v ∈ H1(B+
r , y

2s−1), we have that uv ∈ W 1,1(B+
r )

and
Tr(uv) = Tr(u) Tr(v). (3.10)

Proof. Let us first prove (i). If w ∈ C∞(B+
r ) then (3.9) is trivial; if w belongs toH1(B+

r , y
1−2s)

there exists {ϕn}n∈N ⊂ C∞(B+
r ) such that ϕn → w in H1(B+

r , y
1−2s) as n → ∞. Furthermore,

for any f ∈ C0,1(B+
r ), it is easy to see that ϕnf → wf in H1(B+

r , y
1−2s) as n → ∞ . Then

(3.9) follows from the continuity of the operator Tr.
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We now prove (ii). If u ∈ H1(B+
r , y

1−2s) and v ∈ H1(B+
r , y

2s−1), the fact that uv ∈
W 1,1(B+

r ) follows easily from Hölder’s inequality. Moreover there exist {un}n∈N ⊂ C∞(B+
r )

such that un → u in H1(B+
r , y

1−2s) and a sequence {vn}n∈N ⊂ C∞(B+
r ) such that vn → v

in H1(B+
r , y

2s−1). One can easily verify that unvn → uv in W 1,1(B+
r ), so that Tr(unvn) →

Tr(uv) in L1(B′
r). On the other hand, since by continuity of the operator (3.3) Tr(un) → Tr(u)

and Tr(vn) → Tr(v) in L2(B′
r), we have also that Tr(unvn) = Tr(un) Tr(vn) → Tr(u) Tr(v) in

L1(B′
r), so that necessarily Tr(uv) = Tr(u) Tr(v).

For any r > 0, let

H1+s(B′
r) :=

{
w ∈ H1(B′

r) : ∂w
∂xi

∈ Hs(B′
r) for any i = 1, . . . , N

}
,

see [48] for details on this class of fractional Sobolev spaces. We also consider the space

H2
x(B+

r , y
1−2s) :=

{
w ∈ H1(B+

r , y
1−2s) : ∂w

∂xi
∈ H1(B+

r , y
1−2s) for any i = 1, . . . , N

}
.

Proposition 3.1.7. Let Tr be the trace operator introduced in (3.3). For any r > 0

Tr(H2
x(B+

r , y
1−2s)) ⊆ H1+s(B′

r). (3.11)

Furthermore, for any w ∈ H2
x(B+

r , y
1−2s),

Tr(∇xw) = ∇ Tr(w), (3.12)

where ∇x =
(

∂
∂x1

, ∂
∂x1

, . . . , ∂
∂xN

)
denotes the gradient with respect to the first N variables.

Proof. Let w ∈ H2
x(B+

r , y
1−2s). Let us fix ϕ ∈ C∞

c (B′
r); then there exists a function ϕ̃ ∈

C∞
c (B+

r ∪ B′
r) such that ϕ̃(x, 0) = ϕ(x) for all x ∈ B′

r. Let η ∈ C∞
c (Br) be a smooth cut-off

function such that η ≡ 1 on supp ϕ̃. Then, denoting as ŵ the even reflection of w through
the hyperplane t = 0, w̃ = ηŵ ∈ H1(RN+1, |t|1−2s) and ∂w̃

∂xi
∈ H1(RN+1, |t|1−2s) for all

i ∈ {1, . . . , N}. Then, letting {ρn} be a sequence of mollifiers and wn = ρn ∗ w̃, from [91,
Lemma 1.5] it follows that wn ∈ C∞(RN+1) and, for all i ∈ {1, . . . , N},

wn → w̃ and ∂wn

∂xi
= ρn ∗ ∂w̃

∂xi
→ ∂w̃

∂xi
in H1(RN+1, |t|1−2s).

Then, for any i = 1, . . . , N ,∫
B′

r

Tr(w) ∂ϕ
∂xi

dx =
∫

B′
r

Tr(w̃) ∂ϕ
∂xi

dx = lim
n→∞

∫
B′

r

wn(x, 0) ∂ϕ
∂xi

(x, 0) dx

= − lim
n→∞

∫
B′

r

∂wn

∂xi
(x, 0)ϕ(x, 0) dx = −

∫
B′

r

Tr
(
∂w̃

∂xi

)
ϕdx = −

∫
B′

r

Tr
(
∂w

∂xi

)
ϕdx,

so that the distributional derivative in B′
r of Tr(w) with respect to xi is Tr

(
∂w
∂yi

)
which belongs

to Hs(B′
r). Therefore we have proved (3.12), which directly implies (3.11) in view of (3.3).
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3.2 A regularity result and a Pohozaev-type identity
Let R > 0 and let ν be the outer normal unit vector to B+

R on B′
R, that is ν(x) = (0, . . . , 0,−1)

for any x ∈ B′
R. We are interested in proving Sobolev-type regularity results for a weak

solution U ∈ H1(B+
R , y

1−2s) of the problem{
− div(y1−2sA∇U) + y1−2sc = 0, on B+

R ,

limy→0+ y1−2sA∇U · ν = hTr(U) + g, on B′
R,

(3.13)

under suitable regularity hypotheses on the matrix-valued function A and the functions c, h, g.
More precisely we make the following assumptions:

A(z) =
(
B(z) 0

0 α(z)

)
for any z ∈ B+

R , (3.14)

B ∈ W 1,∞(B+
R ,R

N×N ) is symmetric, α ∈ W 1,∞(B+
R ,R), (3.15)

there exist λ1, λ2 > 0 s.t. λ1|y|2 ≤ A(z)y · y ≤ λ2|y|2 (3.16)

for all z ∈ B+
R and y ∈ RN+1,

g ∈ W 1, 2N
N+2s (B′

R), h ∈ W 1, N
2s (B′

R), (3.17)
c ∈ L2(B+

R , y
1−2s). (3.18)

Under this conditions, a weak solution of (3.13) is a function U ∈ H1(B+
R , y

1−2s) such that∫
B+

R

y1−2sA∇U · ∇ϕdz +
∫

B+
R

y1−2scϕ dz =
∫

B′
R

[g + hTr(U)] Tr(ϕ) dx, (3.19)

for any ϕ ∈ H1
0,S+

R

(B+
R , y

1−2s) see (3.2).
The above definition is well posed since each term in (3.19) is finite, thanks to (3.5).
Our main result is the following theorem.

Theorem 3.2.1. Let U be a weak solution of (3.13) in the sense of (3.19). If assumptions
(3.14), (3.15), (3.16), (3.17), (3.18) are satisfied, then

∇xU ∈ H1(B+
r , y

1−2s) and y1−2s∂U

∂y
∈ H1(B+

r , y
2s−1) (3.20)

for all r ∈ (0, R). Furthermore

∥∇xU∥H1(B+
r ,y1−2s) +

∥∥∥∥y1−2s∂U

∂y

∥∥∥∥
H1(B+

r ,y2s−1)

≤ C

(
∥U∥H1(B+

R ,y1−2s) + ∥c∥L2(B+
R ,y1−2s) + ∥g∥

W
1, 2N

N+2s (B′
R)

)
(3.21)

for a positive constant C > 0 independent of U . More precisely, C depends only on N , s, r,
R, ∥h∥

W 1, N
2s (B′

R)
, λ1, ∥A∥

W 1,∞(B+
R ,R(N+1)2 ).

As an application of Theorem 3.2.1 we prove a Pohozaev-type identity for weak solutions of
(3.13). To this aim we require that the matrix-valued function A satisfies, besides assumptions
(3.14), (3.15), and (3.16), also the condition

A(0) = IdN+1 (3.22)
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where IdN+1 is the identity (N + 1) × (N + 1) matrix.
We first introduce some notation. Let

µ(z) := A(z)z · z
|z|2

and β(z) := A(z)z
µ(z) for any z ∈ B+

R \ {0}, (3.23)

β′(x) := β(x, 0) for any x ∈ B′
R \ {0}.

We also define dA(z)ξξ, for every ξ = (ξ1, . . . , ξN+1) ∈ RN+1 and z ∈ B+
R , as the vector of

RN+1 with i-th component given by

(dA(z)ξξ)i =
N+1∑
h,k=1

∂akh

∂zi
(z)ξhξk, i = 1, . . . , N + 1, (3.24)

where we have defined the matrix A = (akh)k,h=1,...,N+1 in (3.14).
Remark 3.2.2. From (3.15), (3.16), and (3.22) it easily follows that

µ ∈ C0,1(B+
R), 1

µ
∈ C0,1(B+

R), β ∈ C0,1(B+
R ,R

N+1), (3.25)

Jβ ∈ L∞(B+
R ,R

(N+1)2), div(β) ∈ L∞(B+
R),

β′ ∈ L∞(B′
R,RN ), div(β′) ∈ L∞(B′

R),

where Jβ is the Jacobian matrix of β.
Proposition 3.2.3. Under assumptions (3.14), (3.15), (3.16), (3.17), (3.18), and (3.22), let
U be a solution of (3.19). Then for a.e. r ∈ (0, R)

r

2

∫
S+

r

y1−2sA∇U · ∇U dS − r

∫
S+

r

y1−2s |A∇U · ν|2

µ
dS

+ 1
2

∫
B′

r

(divx(β′)h+ β′ · ∇h)| Tr(U)|2 dx− r

2

∫
S′

r

h| Tr(U)|2 dS′

+
∫

B′
r

(divx(β′)g + β′ · ∇g) Tr(U) dx− r

∫
S′

r

gTr(U) dS′

= 1
2

∫
B+

r

y1−2sA∇U · ∇U div(β) dz −
∫

B+
r

y1−2sc(∇U · β) dz

−
∫

B+
r

y1−2sJβ(A∇U) · ∇U dz + 1
2

∫
B+

r

y1−2s(dA∇U∇U) · β dz

+ 1 − 2s
2

∫
B+

r

y1−2sα

µ
A∇U · ∇U dz, (3.26)

where ν is the outer normal vector to B+
r on S+

r , that is ν(z) = z
|z| .

Remark 3.2.4. The two integrals in the first line of (3.26) must be understood for a.e.
r ∈ (0, R) as explained in Remark 3.4.2.

The integrals over S′
r in (3.26) can be instead understood in the classical trace sense.

Indeed, h ∈ W 1, N
2s (B′

r) by (3.17) and (Tr(U))2 ∈ W 1, N
N−2s (B′

r) thanks to (3.20) and (3.11);
then h has a trace on S′

r belonging to L
N
2s (S′

r) and (Tr(U))2 has a trace on S′
r belonging

to L
N

N−2s (S′
r), so that h(Tr(U))2 has a trace on S′

r belonging to L1(S′
r) for all r ∈ (0, R).

Moreover g ∈ W 1, 2N
N+2s (B′

r) by (3.17) and Tr(U) ∈ W 1, 2N
N−2s (B′

r) thanks to (3.20) and (3.11);
then, on S′

r, g has a trace in L
2N

N+2s (S′
r) and Tr(U) has a trace in L

2N
N−2s (S′

r), so that gTr(U)
has a trace on S′

r belonging to L1(S′
r) for all r ∈ (0, R).
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3.3 Regularity of weak solutions: proof of Theorem 3.2.1
For any r > 0 and δ ∈ (0, r), we define

B+
r,δ := {(x, t) ∈ B+

r : y > δ}, S+
r,δ := {(x, t) ∈ S+

r : y > δ}. (3.27)

We are now ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. For any r > 0 we denote

Cr := B′
r × (0, r).

Let us fix 0 < r3 < r2 < r1 < R with r2 small enough so that Cr2 ⊂ B+
r1 ∪B′

r1 . We will show
that U ∈ H2(B+

r3 , y
1−2s), eventually choosing a smaller r1.

We start by defining a suitable cut-off function η ∈ C∞
c (B′

r2 × [0, r2)). We choose a cut-off
function ρ ∈ C∞

c (B′
r2) such that 0 ≤ ρ(x) ≤ 1 for any x ∈ RN and ρ(x) ≡ 1 on B′

r3 and a
function σ ∈ C∞

c ([0, r2)) such that 0 ≤ σ(y) ≤ 1 for any t ∈ R and σ(t) = 1 if t ∈ [0, r3].
Then we define

η(z) = η(x, y) := ρ(x)σ(y). (3.28)

Then η ∈ C∞
c (B′

r2 × [0, r2)) and 0 ≤ η ≤ 1. For any ϕ ∈ H1(B+
r1 , y

1−2s) we can test (3.19)
with ηϕ obtaining∫

B+
r1

[y1−2sηA∇U · ∇ϕ+ y1−2sA∇U · ∇η ϕ] dz +
∫

B+
r1

y1−2scηϕ dz

=
∫

B′
r1

[hTr(U) + g]ρTr(ϕ) dx, (3.29)

thanks to (3.9) and (3.28). We would like to rewrite (3.29) as an equation for U1 := ηU . To
this end we observe that

div(y1−2sUϕA∇η) = Uϕ div(y1−2sA∇η)
+ y1−2sϕA∇η · ∇U + y1−2sU A∇η · ∇ϕ ∈ L1(B+

r1). (3.30)

Letting B+
r1,δ be as in (3.27), the Divergence Theorem yields∫
B+

r1,δ

div(y1−2sUϕA∇η)dz = −δ1−2s
∫

B′
r1

U(x, δ)ϕ(x, δ)α(x, δ)∂η
∂y

(x, δ) dx,

where α has been defined in (3.14). Since ∂η
∂y (x, δ) = 0 for any (x, δ) ∈ RN × [0, r3], passing

to the limit as δ → 0+ we conclude that∫
B+

r1

div(y1−2sUϕA∇η)dz = 0, (3.31)

thanks to the Dominated Convergence Theorem and the fact that

div(y1−2sUϕA∇η) ∈ L1(B+
r1)
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by (3.30). Furthermore

div(y1−2sA∇η) = y1−2s
[
div(A∇η) + (1 − 2s)

y
α
∂η

∂y

]
, (3.32)

and so, thanks to (3.28) and (3.18),

f := U div(A∇η) + U
(1 − 2s)

y
α
∂η

∂y
+ 2A∇U · ∇η + ηc ∈ L2(B+

r1 , y
1−2s). (3.33)

In conclusion, combining (3.30), (3.31), and (3.32) we can rewrite (3.29) as∫
B+

r1

y1−2sA∇U1 · ∇ϕdz +
∫

B+
r1

y1−2sfϕ dz =
∫

B′
r1

[hTr(U1) + ρg] Tr(ϕ) dx (3.34)

for any ϕ ∈ H1(B+
r1 , y

1−2s), in view of (3.9) and (3.33).
If we show that ∇xU1 ∈ H1(Cr2 , y

1−2s) and y1−2s ∂U1
∂y ∈ H1(Cr2 , y

2s−1), then we obtain
that ∇xU ∈ H1(B+

r3 , y
1−2s) and y1−2s ∂U

∂y ∈ H1(B+
r3 , y

2s−1), since η ≡ 1 on Cr3 . To this end
we use Nirenberg’s tangential difference quotient method [107], proving that the family of the
second incremental ratios is L2-bounded; see also [81] for the difference quotient method for
classical elliptic equations.

For any i = 1, . . . , N and k ∈ R \ {0} and for any measurable function w on RN+1
+ , we

define

(τi,kw)(x, y) = w(x+ kei, y) and (ζi,kw)(x, y) = (τi,kw)(x, y) − w(x, y)
k

.

If w = (w1, . . . , wN+1) is a vector of measurable functions we set

τi,k(w) := (τi,kw1, . . . , τi,kwN+1).

We can define τi,k similarly for a matrix of measurable functions.
It is easy to see that τi,k : L2(RN+1

+ , y1−2s) → L2(RN+1
+ , y1−2s) is a well-defined, continu-

ous, linear operator, and the adjoint operator of τi,k with respect to the L2(RN+1
+ , y1−2s)-scalar

product is τi,−k.
Furthermore τi,k : H1(RN+1

+ , y1−2s) → H1(RN+1
+ , y1−2s) is a well-defined, continuous,

linear operator and, for any i = 1, . . . , N and any w ∈ H1(B+
r , y

1−2s),

∂τi,k(w)
∂xi

= τi,k

(
∂w

∂xi

)
,

that is, the operator commutes with tangential derivatives. With a slight abuse of notation,
for any i = 1, . . . , N and k ∈ R \ {0} we denote as τi,k, respectively ζi,k, also the operator
τi,kv(x) = v(x + kei), respectively ζi,kv = 1

k (τi,kv − v), acting on measurable functions v :
RN → R and observe that τi,k, ζi,k : W 1,p(RN ) → W 1,p(RN ) are linear and continuous for any
p ∈ [1,∞); furthermore, the adjoint operator of τi,k is τi,−k.

It is easy to see that, for all measurable functions v, w,

ζi,k(vw) = ζi,k(v)τi,kw + vζi,k(w) (3.35)

and
w(x+ kei, y) − 2w(x, t) + w(x− kei, y)

k2 = (ζi,k ◦ ζi,−k)(w)(x, y).
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We note that the trivial extension of U1 to RN+1
+ belongs to H1(RN+1

+ , y1−2s) since U1 ≡ 0
on B+

r1 \ Cr2 ,; with a slight abuse of notation we will still indicate this extension with U1.
Let |k| <

√
r2

1 − r2
2 − r2 (we note that

√
r2

1 − r2
2 − r2 > 0 since Cr2 ⊂ B+

r1). The function
ϕ̃ := (ζi,k◦ζi,−k)(U1) belongs to H1

0,S+
r1

(B+
r1 , y

1−2s) thanks to (3.28) and so its trivial extension,

still denoted as ϕ̃, belongs to H1(RN+1
+ , y1−2s). Moreover by (3.2) we have that, for any

i = 1, . . . , N ,
Tr(ζi,k(ζi,−k(ϕ̃))) = ζi,k(Tr(ζi,−k(ϕ̃))) = ζi,k(ζi,−k(Tr(ϕ̃))). (3.36)

Therefore testing (3.34) with ϕ̃ we obtain∫
B+

r1

y1−2sζi,−k(A∇U1) · ∇(ζi,−k(U1)) dz +
∫

B+
r1

y1−2sf (ζi,k ◦ ζi,−k)(U1) dz

=
∫

B′
r1

ζi,−k(ρg) Tr(ζi,−k(U1)) dx+
∫

B′
r1

ζi,−k(hTr(U1)) Tr(ζi,−k(U1)) dx, (3.37)

thanks to (3.36). From (3.37) it follows that, for any i = 1, . . . , N ,∫
B+

r1

y1−2sA∇(ζi,−k(U1)) · ∇(ζi,−k(U1)) dz

≤
∫

B+
r1

y1−2s|ζi,−k(A)∇(τi,−k(U1)) · ∇(ζi,−k(U1))| dz

+
∫

B+
r1

y1−2s|f (ζi,k ◦ ζi,−k)(U1)| dz +
∫

B′
r1

|ζi,−k(ρg) Tr(ζi,−k(U1))| dx

+
∫

B′
r1

|ζi,−k(h) Tr(τi,−k(U1)) Tr(ζi,−k(U1))| dx

+
∫

B′
r1

|h|| Tr(ζi,−k(U1))|2 dx, (3.38)

thanks to (3.35) and (3.36). Now we estimate each term of the right hand side of (3.38). We
start by noticing that, thanks to (3.15), there exists a constant Λ > 0 (depending only on the
Lipschitz constants of the entries of A) such that

∥ζi,−k(A)(z)∥L(RN+1,RN+1) ≤ Λ for all i = 1, . . . , N, z ∈ B+
r1 ,

and k ∈
(
r2 −

√
r2

1 − r2
2,
√
r2

1 − r2
2 − r2

)
, (3.39)

where ∥ζi,−k(A)(z)∥L(RN+1,RN+1) is the norm of ζi,−k(A)(z) as a linear operator from RN+1

to RN+1. Then by (3.39), Hölder’s inequality and Cauchy-Schwarz’s inequality in RN+1,∫
B+

r1

y1−2s|ζi,−k(A)∇(τi,−k(U1)) · ∇(ζi,−k(U1))| dz

≤ Λ ∥∇(τi,−k(U1))∥L2(B+
r1 ,y1−2s) ∥∇(ζi,−k(U1))∥L2(B+

r1 ,y1−2s) . (3.40)

By Hölder’s inequality and (3.8),∫
B+

r1

y1−2s|f (ζi,k ◦ ζi,−k)(U1)| dz ≤ ∥f∥L2(B+
r1 ,y1−2s) ∥∇(ζi,−k(U1))∥L2(B+

r1 ,y1−2s) . (3.41)
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Furthermore by (3.5) and Hölder’s inequality∫
B′

r1

|ζi,−k(ρg) Tr(ζi,−k(U1))| dx ≤ S
1
2
N,s ∥ρg∥

W
1, 2N

N+2s (B′
r1 )

∥∇(ζi,−k(U1))∥L2(B+
r1 ,y1−2s) , (3.42)

∫
B′

r1

|ζi,−k(h) Tr(τi,−k(U1)) Tr(ζi,−k(U1))| dx

≤ SN,s ∥h∥
W 1, N

2s (B′
r1 )

∥∇(τi,−k(U1))∥L2(B+
r1 ,y1−2s) ∥∇(ζi,−k(U1))∥L2(B+

r1 ,y1−2s) , (3.43)

and ∫
B′

r1

|h|| Tr(ζi,−k(U1))|2 dx ≤ SN,s ∥h∥
W 1, N

2s (B′
r1 )

∥∇(ζi,−k(U1))∥2
L2(B+

r1 ,y1−2s) . (3.44)

Putting together (3.38), (3.40), (3.41), (3.42), (3.43), (3.44) and (3.16) we obtain that

(
λ1 − SN,s ∥h∥

W 1, N
2s (B′

r1 )

)
∥∇(ζi,−k(U1))∥L2(B+

r1 ,y1−2s)

≤ Λ ∥∇(τi,−k(U1))∥L2(B+
r1 ,y1−2s) + ∥f∥L2(B+

r1 ,y1−2s) + S
1
2
N,s ∥ρg∥

W
1, 2N

N+2s (B′
r1 )

+ SN,s ∥h∥
W 1, N

2s (B′
r1 )

∥∇(τi,−k(U1))∥L2(B+
r1 ,y1−2s)

= (Λ + SN,s ∥h∥
W 1, N

2s (B′
r1 )

) ∥∇U1∥L2(B+
r1 ,y1−2s)

+ ∥f∥L2(B+
r1 ,y1−2s) + S

1
2
N,sCρ ∥g∥

W
1, 2N

N+2s (B′
r1 )
, (3.45)

for some positive constant Cρ > 0 depending only on ∥∇ρ∥L∞(B′
r1 ), where we have used the

fact that ∥∇(τi,−k(U1))∥L2(B+
r1 ,y1−2s) = ∥∇U1∥L2(B+

r1 ,y1−2s) since supp τi,−k(U1) ⊂ B+
r1 ∪ B′

r1

for all |k| <
√
r2

1 − r2
2 − r2.

Eventually choosing r1 smaller form the beginning, we may suppose that

λ1 − SN,s ∥h∥
W 1, N

2s (B′
r1 )

> 0,

by the absolute continuity of the integral. We conclude that for any i = 1, . . . , N and any
j = 1, . . . , N + 1{

∂(ζi,−k(U1))
∂zj

: |k| <
√
r2

1 − r2
2 − r2

}
is bounded in L2(B+

r1 , y
1−2s).

It follows that, for any i = 1, . . . , N and j = 1, . . . , N + 1, there exist a function ψi,j ∈
L2(B+

r1 , y
1−2s) and a sequence kn → 0 such that ∂(ζi,−kn (U1))

∂zj
⇀ ψi,j weakly in L2(B+

r1 , y
1−2s)

as n → ∞. Furthermore, by (3.8), the family of functions {(ζi,−kn(U1)) : n ∈ N} is bounded
in L2(B+

r1 , y
1−2s) and so there exists a function φi ∈ L2(B+

r1 , y
1−2s) such that ζi,−kn(U1) ⇀ φi

weakly in L2(B+
r1 , y

1−2s) for any i = 1, . . . , N , up to a subsequence. For any test function

61



ϕ ∈ C∞
c (B+

r1), thanks to the Dominated Converge Theorem,∫
B+

r1

φiϕdz = lim
n→∞

∫
B+

r1

ζi,−kn(U1)ϕdz

= − lim
n→∞

∫
B+

r1

U1ζi,kn(ϕ) dz = −
∫

B+
r1

U1
∂ϕ

∂zi
dz =

∫
B+

r1

∂U1
∂zi

ϕdz

and hence φi = ∂U1
∂zi

, i.e. ζi,−kn(U1) ⇀ ∂U1
∂zi

weakly in L2(B+
r1 , y

1−2s), up to a subsequence.
Furthermore, for any ϕ ∈ C∞

c (B+
r1), i = 1, . . . , N , and j = 1, . . . , N + 1, we have that∫

B+
r1

ψi,jϕdz = lim
n→∞

∫
B+

r1

∂(ζi,−kn(U1))
∂zj

ϕdz

= − lim
n→∞

∫
B+

r1

ζi,−kn(U1) ∂ϕ
∂zj

dz = −
∫

B+
r1

∂U1
∂zi

∂ϕ

∂zj
dz,

that is, ψi,j = ∂
∂zj

∂U1
∂zi

. Therefore the distributional derivative of ∂U1
∂zi

respect to the variable
zj belongs to L2(B+

r1 , y
1−2s) for any j = 1, . . . , N + 1, and i = 1, . . . , N , i.e.

∇xU1 ∈ H1(B+
r1 , y

1−2s). (3.46)

Furthermore, estimate (3.45) and weak lower semi-continuity of the L2(B+
r1 , y

1−2s)-norm imply
that

∥∇xU1∥H1(B+
r1 ,y1−2s) ≤ C

(
∥∇U1∥L2(B+

r1 ,y1−2s) + ∥f∥L2(B+
r1 ,y1−2s) + ∥g∥

W
1, 2N

N+2s (B′
r1 )

)
(3.47)

for a positive constant C = C(N, s, ∥h∥
W 1, N

2s (B′
r1 )
, λ1,Λ, ∥∇ρ∥L∞(B+

r1 )) > 0.

This also implies that ∇x(y1−2s ∂U1
∂y ) ∈ L2(B+

r1 , y
2s−1) with norm estimated as above. To

conclude, it remains to show that ∂
∂t(y

1−2s ∂U1
∂y ) ∈ L2(B+

r1 , y
2s−1).

To this aim we observe that, for any ϕ ∈ C∞
c (B+

r1), (3.34), the Divergence Theorem,
(3.14), and (3.16) imply that∫

B+
r1

y1−2s∂U1
∂t

∂ϕ

∂t
dz =

∫
B+

r1

y1−2sα
∂U1
∂t

∂

∂t

(
ϕ

α

)
dz +

∫
B+

r1

y1−2s∂α

∂y

∂U1
∂y

ϕ

α
dz

= −
∫

B+
r1

y1−2sB∇xU1 · ∇x

(
ϕ

α

)
dz −

∫
B+

r1

y1−2sf
ϕ

α
dz +

∫
B+

r1

y1−2s∂α

∂y

∂U1
∂t

ϕ

α
dz

= −
∫

B+
r1

y1−2s 1
α

(
− divx(B∇xU1) + f − ∂α

∂y

∂U1
∂y

)
ϕdz.

Thanks to (3.15), (3.16), (3.18), (3.33), (3.46), and Hölder’s inequality, we then conclude that

y2s−1 ∂

∂t

(
y1−2s∂U1

∂y

)
= 1
α

(
− div(B∇xU1) + f − ∂α

∂y

∂U1
∂y

)
∈ L2(B+

r1 , y
1−2s)

which implies that ∂
∂t(y

1−2s ∂U1
∂y ) ∈ L2(B+

r1 , y
2s−1) and hence

y1−2s∂U1
∂y

∈ H1(B+
r1 , y

2s−1),
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with H1(B+
r1 , y

2s−1)-norm estimated as in (3.47).
Since η ≡ 1 on B+

r3 we have thereby proved that

∇xU ∈ H1(B+
r3 , y

1−2s) and y1−2s∂U

∂y
∈ H1(B+

r3 , y
2s−1)

and, in view of (3.33),

∥∇xU∥H1(B+
r3 ,y1−2s) +

∥∥∥∥y1−2s∂U

∂y

∥∥∥∥
H1(B+

r3 ,y2s−1)

≤ C

(
∥U∥H1(B+

R ,y1−2s) + ∥c∥L2(B+
R ,y1−2s) + ∥g∥

W
1, 2N

N+2s (B′
R)

)
(3.48)

for a constant C > 0 depending only on N , s, r1, r3, ∥h∥
W 1, N

2s (B′
R)

, λ1, ∥A∥
W 1,∞(B+

R ,R(N+1)2 ).

Reasoning in a similar way we can show that, for any r ∈ (0, R) and any x ∈ B′
r,

there exists rx > 0 such that B+
rx

(x) ⊂ B+
R , ∇xU ∈ H1(B+

rx
(x), y1−2s), and y1−2s ∂U

∂y ∈
H1(B+

rx
(x), y2s−1), where

B+
rx

(x) := {ξ ∈ RN+1
+ : |(x, 0) − ξ| < rx}.

Then we can cover B′
r with a finite family of open sets {B+

rxi
(xi)}i∈I such that

∇xU ∈ H1(B+
rxi

(xi), y1−2s) and y1−2s∂U

∂y
∈ H1(B+

rxi
(xi), y2s−1) for all i ∈ I

and an estimate of type (3.48) is satisfied. Furthermore, letting B+
R,δ be as in (3.27), it is easy

to verify that y1−2sA ∈ C0,1(B+
R,δ) and y1−2sc ∈ L2(B+

R,δ) for any δ ∈ (0, R), since the weight
y1−2s is Lipschitz continuous on B+

R,δ. Then we may conclude that U ∈ H2(B+
r,δ, y

1−2s) for
any r ∈ (0, R) and δ ∈ (0, R) by classical elliptic regularity theory (see e.g. [80, Theorem
8.8]).

Combining the above information we obtain (3.20) and (3.21).

Remark 3.3.1. The regularity result of Theorem 3.2.1 applies also to problems of the form{
− div(y1−2sA∇U) + y1−2sbU + y1−2sc = 0, on B+

R ,

limy→0+ y1−2sA∇U · ν = hTr(U) + g, on B′
R,

with c, h, g as in assumptions (3.17) and (3.18), and a potential b ∈ LqN,s(B+
R , y

1−2s), where

qN,s :=

N + 2 − 2s, if s ∈
(
0, 1

2

)
,

N + 1, if s ∈
[

1
2 , 1
)
.

Indeed if b ∈ LqN,s(B+
R , y

1−2s) and U ∈ H1(B+
R , y

1−2s), then bU ∈ L2(B+
R , y

1−2s) in view of
Hölder’s inequality and the following Sobolev-type embedding result.

Lemma 3.3.2. For any r > 0, H1(B+
r , y

1−2s) ⊂ L2∗∗
s (B+

r , y
1−2s), where

2∗∗
s := min

{
2N + 2 − 2s

N − 2s , 2N + 1
N − 1

}
=

2N+2−2s
N−2s , if s ∈

(
0, 1

2

)
,

2N+1
N−1 , if s ∈

[
1
2 , 1
)
.
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Furthermore, there exists a constant KN,s > 0 such that, for any r > 0 and any w ∈
H1(B+

r , y
1−2s),

(∫
B+

r

y1−2s|w|2∗∗
s dz

) 2
2∗∗

s ≤ KN,s,r

( 1
r2

∫
B+

r

y1−2sw2 dz +
∫

B+
r

y1−2s|∇w|2 dz
)
,

where

KN,s,r :=

KN,s, if s ∈
(
0, 1

2

)
,

KN,s(2s− 1)r
2

N+1 , if s ∈
[

1
2 , 1
)
.

Proof. The claim follows from a scaling argument, [64, Appendix A.1] and [111, Theorem
19.20], see also [120, Theorem 2.4].

3.4 Proof of Proposition 3.2.3
We start with a useful formula.

Proposition 3.4.1. Let U be a solution of (3.19). For a.e. r ∈ (0, R) and for all ϕ ∈
H1(B+

r , y
1−2s)∫

B+
r

y1−2s[A∇U ·∇ϕ+ cϕ]dz = 1
r

∫
S+

r

y1−2sA∇U ·z ϕ dS +
∫

B′
r

[hTr(U) + g] Tr(ϕ) dx. (3.49)

Remark 3.4.2. By Coarea Formula∫
B+

R

∣∣∣y1−2sA∇U · z

|z|
ϕ
∣∣∣ dz =

∫ R

0

(∫
S+

r

∣∣∣y1−2sA∇U · z
r
ϕ
∣∣∣ dS) dr.

It follows that the function f(r) :=
∫

S+
r
y1−2sA∇U · z

rϕdS is well-defined as an element of
L1(0, R) and hence a.e. r ∈ (0, R) is a Lebesgue point of f .

Proof. By density it is enough to prove (3.49) for any ϕ ∈ C∞(B+
r ). Let us consider the

following sequence of radial cut-off functions

ηn(|z|) :=


1, if 0 ≤ |z| ≤ r − 1

n ,

n(r − |z|), if r − 1
n ≤ |z| ≤ r,

0, if |z| ≥ r.

Testing (3.19) with ϕηn and passing to the limit as n → ∞ we obtain (3.49) thanks to the
Dominated Convergence Theorem, (3.9) and Remark 3.4.2.

Proof of Proposition 3.2.3. The following Rellich-Nec̆as type identity

div
(
y1−2s(A∇U · ∇U)β − 2y1−2s(∇U · β)A∇U

)
= y1−2sA∇U · ∇U div(β)

− 2β · ∇U div
(
y1−2sA∇U

)
+ (d(y1−2sA)∇U∇U) · β − 2Jβ(y1−2sA∇U) · ∇U
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holds in a distributional sense in B+
R . In view of (3.14) and (3.13) the above equation can be

rewritten as

div
(
y1−2s(A∇U · ∇U)β − 2y1−2s(∇U · β)A∇U

)
= y1−2sA∇U · ∇U div(β) − 2y1−2sc(β · ∇U) + y1−2sdA∇U∇U · β

+ (1 − 2s)y1−2sα

µ
A∇U · ∇U − 2Jβ(y1−2sA∇U) · ∇U (3.50)

with dA as in (3.24).
Let r ∈ (0, R). By Theorem 3.2.1 an Remark 3.2.2, letting β = (β1, . . . , βN , α/µ) (see

(3.14) and (3.23)), we have that

∇U · β = ∇xU · (β1, . . . , βN ) + α

µ
yUy ∈ H1(B+

r , y
1−2s). (3.51)

In particular, to prove that ∂
∂y (tUy) ∈ L2(B+

r , y
1−2s), it is useful to observe that

∂

∂y
(yUy) = y2s ∂

∂y
(y1−2sUy) + 2sUy

and recall that ∂
∂y

(
y1−2s ∂U

∂y

)
∈ L2(B+

r , y
2s−1) by (3.20).

We observe that yUy = y2s(y1−2sUy), with

y2s ∈ H1(B+
r , y

1−2s) and y1−2sUy ∈ H1(B+
r , y

2s−1)

by (3.20); hence (3.10) implies that Tr(tUt) = Tr(t2s) Tr(y1−2sUy) = 0, so that from (3.51),
(3.9), and (3.12) we deduce that

Tr(∇U · β) = Tr(∇xU · (β1, . . . , βN )) + Tr
(α
µ
yUy

)
= ∇x Tr(U) · β′. (3.52)

From (3.13), (3.18), and (3.51) it follows that

div(y1−2s(∇U · β)A∇U) = y1−2sc(∇U · β) + y1−2sA∇U · ∇(∇U · β) ∈ L1(B+
r ) (3.53)

so that, in view of (3.50), (3.25), (3.18), and (3.51) we obtain also that

div
(
y1−2s(A∇U · ∇U)β

)
∈ L1(B+

r ). (3.54)

Applying the Divergence Theorem on the set B+
r,δ defined in (3.27) (and recalling from The-

orem 3.2.1 or classical elliptic regularity theory that U ∈ H2(B+
r,δ)), we have that∫

B+
r,δ

div(y1−2s(A∇U · ∇U)β) dz = r

∫
S+

r,δ

y1−2sA∇U · ∇U dS

− δ2−2s
∫

B′√
r2−δ2

α(x, δ)
µ(x, δ) (A∇U · ∇U)(x, δ) dx (3.55)

with S+
r,δ as in (3.27). We claim that there exists a sequence δn → 0+ such that

lim
n→∞

δ2−2s
n

∫
B′√

r2−δ2
n

α(x, δn)
µ(x, δn) (A∇U · ∇U)(x, δn) dx = 0. (3.56)

65



To prove (3.56) we argue by contradiction. If the claim does not hold, then there exist a
constant C > 0 and r̄ ∈ (0, r) such that

δ1−2s
∫

B′
r

α(x, δ)
µ(x, δ) (A∇U · ∇U)(x, δ) dx ≥ C

δ
for any δ ∈ (0, r̄). (3.57)

We may suppose that B′
r̄ × (0, r̄) ⊂ B+

r and integrating (3.57) in (0, r̄) we obtain∫
B+

R

y1−2sα

µ
A∇U · ∇U dz ≥

∫ r̄

0
y1−2s

(∫
B′

r

α(x, y)
µ(x, y) (A∇U · ∇U)(x, y) dx

)
dt

≥ C

∫ r̄

0

1
y
dt = +∞,

which is a contradiction since α
µA∇U · ∇U ∈ L1(B+

R , y
1−2s) thanks to (3.25) and Hölder’s

inequality. Therefore passing to the limit as n → ∞ and δ = δn in (3.55) and taking into
account (3.54) we conclude that∫

B+
r

div(y1−2s(A∇U · ∇U)β) dz = r

∫
S+

r

y1−2sA∇U · ∇U dS (3.58)

for a.e. r ∈ (0, R). From (3.53) and (3.49) it follows that∫
B+

r

div(y1−2s(∇U · β)A∇U) dz

=
∫

B+
r

y1−2sc(∇U · β) dz +
∫

B+
r

y1−2sA∇U · ∇(∇U · β) dz

= 1
r

∫
S+

r

y1−2s(A∇U · z)(∇U · β) dS +
∫

B′
r

[hTr(U) + g] Tr(∇U · β) dx

= r

∫
S+

r

y1−2s |A∇U · ν|2

µ
dS +

∫
B′

r

[hTr(U) + g](∇x Tr(U) · β′) dx, (3.59)

thanks to (3.15), (3.23), and (3.52). We observe that β′h ∈ W 1, N
2s (B′

r,RN ) in view of (3.17)
and (3.25) and (Tr(U))2 ∈ W 1, N

N−2s (B′
r) thanks to (3.20) and (3.11); then an integration by

parts on B′
r yields∫

B′
r

hTr(U)(∇x Tr(U) · β′) dx = 1
2

∫
B′

r

∇x(Tr(U))2 · (hβ′) dx

= r

2

∫
S′

r

h| Tr(U)|2 dS′ − 1
2

∫
B′

r

(divx(β′)h+ β′ · ∇h)| Tr(U)|2 dx. (3.60)

Moreover β′g ∈ W 1, 2N
N+2s (B′

r,RN ) by (3.17) and Tr(U) ∈ W 1, 2N
N−2s (B′

r) by (3.20) and (3.11),
hence, integrating by parts, we obtain that∫

B′
r

∇x Tr(U) · (β′g) dx = r

∫
S′

r

gTr(U) dS′ −
∫

B′
r

(divx(β′)g + β′ · ∇g) Tr(U) dx. (3.61)

Putting together (3.50), (3.58), (3.59), (3.60), and (3.61), we obtain (3.26).
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Chapter 4

Unique continuation from the
boundary for the spectral fractional
Laplacian

4.1 Statement of the main results
In this Chapter we establish a unique continuation principle and derive local asymptotics
from a point x0 ∈ ∂Ω for the solutions to the following equation

(−∆)su = hu on Ω, (4.1)

where s ∈ (0, 1), Ω ⊆ RN is a bounded Lipschitz domain whose boundary is C1,1 in a
neighbourhood of x0, N > 2s, h is a measurable function on Ω satisfying suitable summability
properties, (see (4.8)), and (−∆)s is the fractional Laplacian.

In order to introduce a suitable functional setting and give a weak formulation of (4.1),
we recall the definition of the spectral fractional Laplacian, which can be given in terms of
the Dirichlet eigenvalues of the Laplacian, see e.g. [37], [102] and [9]. From classical spectral
theory, the Dirichlet eigenvalue problem{

−∆φ = µφ, in Ω,
φ = 0, on ∂Ω,

admits an increasing and diverging sequence {µk}k∈N\{0} of positive eigenvalues (repeated
according to their multiplicity). Furthermore, there exists an orthonormal basis of L2(Ω)
made of the corresponding eigenfunctions {φk}k∈N\{0}. Every v ∈ L2(Ω) can be expanded
with respect to the basis {φk}k∈N\{0} as

v =
∞∑

k=1
(v, φk)L2(Ω)φk in L2(Ω),

where (v, φk)L2(Ω) is the L2-scalar product, i.e. (v1, v2)L2(Ω) =
∫

Ω v1v2 dx.
We introduce the functional space

Hs(Ω) :=
{
v ∈ L2(Ω) :

∞∑
k=1

µs
k(v, φk)2

L2(Ω) < +∞
}
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which is a Hilbert space with respect to the scalar product

(v1, v2)Hs(Ω) :=
∞∑

k=0
µs

k(v1, φk)L2(Ω)(v2, φk)L2(Ω), v1, v2 ∈ Hs(Ω). (4.2)

A more explicit characterization of the space Hs(Ω) is provided by the interpolation theory,
see [26, Section 3.1.3], and [101] or Proposition 5.1.2:

Hs(Ω) = [H1
0 (Ω), L2(Ω)]1−s =

{
Hs

0(Ω), if s ∈ (0, 1) \ {1
2},

H
1/2
00 (Ω), if s = 1

2 .

Here, denoting as Hs(Ω) the usual fractional Sobolev space W s,2(Ω), Hs
0(Ω) is the closure of

C∞
c (Ω) in Hs(Ω), and

H
1/2
00 (Ω) :=

{
u ∈ H

1
2
0 (Ω) :

∫
Ω

u2(x)
d(x, ∂Ω) dx < +∞

}
, (4.3)

where d(x, ∂Ω) := inf{|x − y| : y ∈ ∂Ω}. We recall that Hs(Ω) = Hs
0(Ω) if s ∈ (0, 1

2 ],
see [101]. Moreover, if s ̸= 1

2 , the trivial extension by 0 outside Ω defines a linear and
continuous operator from Hs

0(Ω) into Hs(RN ), see [31, Remark 2.5 and Proposition B.1]. On
the other hand, the trivial extension defines a linear and continuous operator from H

1/2
00 (Ω)

into H1/2(RN ), as one can easily deduce from estimate (B.2) in [31]. Then

ι : Hs(Ω) → Hs(RN ), (4.4)

v 7→ ṽ =
{
v, in Ω,
0, in RN \ Ω,

is a linear and continuous operator.
It is easy to verify that, if v ∈ Hs(Ω), then the series

∑∞
k=1 µ

s
k(v, φk)L2(Ω)φk converges in

the dual space (Hs(Ω))∗ to some F ∈ (Hs(Ω))∗ such that (Hs(Ω))∗⟨F,φk⟩Hs(Ω) = µs
k(v, φk)L2(Ω).

Hence, for every v ∈ Hs(Ω), we can define its spectral fractional Laplacian as

(−∆)sv =
∞∑

k=1
µs

k(v, φk)L2(Ω)φk ∈ (Hs(Ω))∗. (4.5)

Actually, the spectral fractional Laplacian is the Riesz isomorphism between Hs(Ω) endowed
with the scalar product (4.2) and its dual (Hs(Ω))∗, i.e.

(Hs(Ω))∗⟨(−∆)sv1, v2⟩Hs(Ω) = (v1, v2)Hs(Ω) for all v1, v2 ∈ Hs(Ω). (4.6)

The spectral fractional Laplacian defined in (4.5) is a different operator from the usual frac-
tional Laplacian defined by the Fourier transform as

F((−∆)sv)(ξ) := |ξ|2sv̂(ξ) (4.7)

for any v ∈ S(RN ). Indeed, the spectral fractional Laplacian depends on the domain Ω
and it is a global operator in Ω, while the fractional Laplacian is a global operator on the
whole RN . Moreover, the eigenfunctions of the spectral fractional Laplacian coincide with
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the eigenfunctions of the Dirichlet Laplacian, hence they are smooth up to the boundary if
Ω is sufficiently regular; on the other hand, the eigenfunctions of the restricted fractional
Laplacian, defined by restricting the operator in (4.7) to act only on functions vanishing
outside Ω, are only Hölder continuous, see [117].

Within the functional setting introduced above, we can give the notion of weak solution
to (4.1). To this purpose, we assume that

h ∈ W 1, N
2s

+ε(Ω) (4.8)

for some ε ∈ (0, 1). We note that it is not restrictive to assume ε small. In view of (4.6), we
say that a function u ∈ Hs(Ω) is a weak solution to (4.1) if

(u, ϕ)Hs(Ω) =
∫

Ω
h(x)u(x)ϕ(x) dx for any ϕ ∈ C∞

c (Ω). (4.9)

The right hand side in (4.9) is finite in view of (4.8), the Hölder’s inequality, and the following
fractional Sobolev inequality

∥v∥
L2∗

s (Ω) ≤ KN,s ∥v∥Hs(Ω) for any v ∈ Hs
0(Ω),

where
2∗

s := 2N
N − 2s,

and KN,s > 0 is a positive constant depending only on N and s, see e.g. [48, Theorem 6.5]
and [31, Remark 2.5 and Proposition B.1].

In order to establish a unique continuation property at a fixed point x0 ∈ ∂Ω, we need to
assume some regularity on the boundary of Ω near x0; more precisely, we assume that there
exist a radius R > 0 and a function g such that

g ∈ C1,1(RN−1,R) (4.10)

and, up to rigid motions, letting x = (x′, xN ) ∈ RN−1 × R,

∂Ω ∩B′
R(x0) = {(x′, xN ) ∈ B′

R(x0) : xN = g(x′)}, (4.11)
Ω ∩B′

R(x0) = {(x′, xN ) ∈ B′
R(x0) : xN < g(x′)}, (4.12)

where, for any r > 0 and x ∈ RN ,

B′
r(x) := {y ∈ RN : |y − x| < r}. (4.13)

The spectral fractional Laplacian defined in (4.5) turns out to be a nonlocal operator on Ω.
As we intend to use an approach based on local doubling inequalities, which are deduced from
an Almgren-type monotonicity formula in the spirit of [79], it is quite natural to deal with
the local realization of the spectral fractional Laplacian. This is obtained by the extension
procedure described in [35] (see also [125] and [37]) which transforms (4.1) into a singular or
degenerate problem on a cylinder contained in a N + 1-dimensional space.

We define
CΩ := Ω × (0,+∞), ∂LCΩ := ∂Ω × [0,+∞), (4.14)

and
H1

0,L(CΩ, y
1−2s) := C∞

c (CΩ ∪ Ω)∥·∥H1(CΩ,y1−2s) ,
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i.e. H1
0,L(CΩ, y

1−2s) is the closure in H1(CΩ, y
1−2s) of C∞

c (CΩ ∪ Ω), see also Section 3.1 in
Chapter 3. Furthermore there exists a linear and continuous trace operator

TrΩ : H1
0,L(CΩ, y

1−2s) → Hs(Ω) (4.15)

which is also onto (see [37, Proposition 2.1]). Moreover, in [37] it is observed that, for every
v ∈ Hs(Ω), the minimization problem

min
w∈H1

0,L(CΩ,y1−2s)
TrΩ(w)=v

{∫
CΩ
y1−2s|∇w(x, t)|2 dx dt

}

has a unique minimizer H(v) = V ∈ H1
0,L(CΩ, y

1−2s) which solves
div(y1−2s∇V ) = 0, in CΩ,

TrΩ(V ) = v, on Ω × {0},
V = 0, on ∂Ω × [0,+∞),
− limy→0+ y1−2s ∂V

∂y = κs,N (−∆)sv, on Ω × {0},

(4.16)

where κs,N > 0 is a positive constant depending only on N and s. Equation (4.16) has to be
interpreted in a weak sense, that is∫

CΩ
y1−2s∇V · ∇ϕdz = κs,N (v,TrΩ(ϕ))Hs(Ω) for all ϕ ∈ H1

0,L(CΩ, y
1−2s),

in view of (4.6). Hence, if u ∈ Hs(Ω) solves (4.1), then its extension U ∈ H1
0,L(CΩ, y

1−2s)
weakly solves 

div(y1−2s∇U) = 0, in CΩ,

TrΩ(U) = u, on Ω × {0},
U = 0, on ∂Ω × [0,+∞),
− limy→0+ y1−2s ∂U

∂y = κs,Nhu, on Ω × {0},

(4.17)

according to (4.16), namely∫
CΩ
y1−2s∇U · ∇ϕdz = κs,N

∫
Ω
huTrΩ(ϕ) dx for all ϕ ∈ H1

0,L(CΩ, y
1−2s). (4.18)

The asymptotic behavior at x0 ∈ ∂Ω of any solution U of (4.17), and consequently of any
solution u of (4.1), turns out to be related to the eigenvalues of the following problem

− divS(θ1−2s
N+1 ∇SY ) = µ θ1−2s

N+1 Y, on S+

limθN+1→0+ θ1−2s
N+1 ∇SY · ν = 0, on S′,

Y ∈ H1
odd(S+, θ1−2s

N+1 ),

(4.19)

where

S := {θ = (θ′, θN , θN+1) ∈ RN+1 : |θ′|2 + θ2
N + θ2

N+1 = 1},
S+ := {θ = (θ′, θN , θN+1) ∈ S : θN+1 > 0},
S′ := ∂S+ = {θ = (θ′, θN , θN+1) ∈ S : θN+1 = 0},
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and ν is the outer normal vector to S+ on S′, that is ν = −(0, . . . , 0, 1). We consider the
weighted space

L2(S+, θ1−2s
N+1 ) :=

{
Ψ : S+ → R measurable :

∫
S+
θ1−2s

N+1 Ψ2 dS < +∞
}
,

where dS denotes the volume element on N -dimensional spheres. In order to introduce the
space H1

odd(S+, θ1−2s
N+1 ) where problem (4.19) is formulated, we first denote by H1(S+, θ1−2s

N+1 )
the completion of C∞(S+) with respect to the norm

∥ϕ∥H1(S+,θ1−2s
N+1 ) :=

(∫
S+
θ1−2s

N+1 (ϕ2 + |∇Sϕ|2) dS
)1/2

.

Then we define

H1
odd(S+, θ1−2s

N+1 ) := {Ψ ∈ H1(S+, θ1−2s
N+1 ) : Ψ(θ′, θN , θN+1) = −Ψ(θ′,−θN , θN+1)}. (4.20)

It is easy to verify that H1
odd(S+, θ1−2s

N+1 ) is a closed subspace of H1(S+, θ1−2s
N+1 ).

A function Y ∈ H1
odd(S+, θ1−2s

N+1 ) is an eigenfunction of (4.19) if Y ̸≡ 0 and∫
S+
θ1−2s

N+1 ∇SY · ∇SΨ dS = µ

∫
S+
θ1−2s

N+1YΨ dS (4.21)

for all Ψ ∈ H1
odd(S+, θ1−2s

N+1 ).
By classical spectral theory, the set of the eigenvalues of problem (4.19) is an increasing

and diverging sequence of positive real numbers {µm}m∈N\{0}. In Section 4.7 we explicitly
determine the sequence {µm}m∈N\{0}, obtaining that, for all m ∈ N \ {0},

µm =
{
m2 +m(N − 2s), if N > 1,
(2m− 1)2 + (2m− 1)(N − 2s), if N = 1.

(4.22)

Let, for future reference,

Vm be the eigenspace of problem (4.19) associated to the eigenvalue µm, (4.23)
Mm be the dimension of Vm, (4.24)
{Ym,k : m ∈ N \ {0} and k ∈ {1, . . . ,Mm}}L2(S+, θ1−2s

N+1 )
be an orthonormal basis of such that {Ym,k : k = 1, . . . ,Mm} is a basis of Vm. (4.25)

Remark 4.1.1. Let Y be an eigenfunction of (4.19) associated to the eigenvalue m2 +m(N−
2s). Then Y can not vanish identically on S′.

Indeed, if Y ≡ 0 on S′, the function V (rθ) := rmY (θ) would solve div(y1−2s∇V ) = 0
on RN+1

+ , satisfying both Neumann and Dirichlet boundary condition on RN × {0}. This
would contradict the unique continuation principle for elliptic equations with weights in the
Muckenhoupt A2 class, see [79], [126], and [114, Proposition 2.2].

The main result of this Chapter is a complete classification of asymptotic blow-up profiles
at a point x0 ∈ ∂Ω for solutions of (4.16) and, in turn, for the corresponding solutions of
(4.1).
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Theorem 4.1.2. Let N > 2s and Ω ⊂ RN be a bounded Lipschitz domain. Let x0 ∈ ∂Ω and
assume that there exist R > 0 and a function g satisfying (4.10), (4.11), and (4.12). Let u be
a non trivial solution of (4.1) in the sense of (4.9), with h satisfying (4.8). Then there exists
m0 ∈ N \ {0} (which is odd in the case N = 1) and an eigenfunction Y of (4.19) associated
to the eigenvalue m2

0 +m0(N − 2s), such that

λ−m0u(λx+ x0) → |x|m0 Ŷ

(
x

|x|
, 0
)

as λ → 0+ in Hs(B′
1),

where B′
1 := B′

1(0) has been defined in (4.13), u is trivially extended to zero outside Ω as in
(4.4), and

Ŷ (θ′, θN , θN+1) =
{
Y (θ′, θN , θN+1), if θN < 0,
0, if θN ≥ 0.

(4.26)

Unlike the analogous result for the restricted fractional Laplacian established in [47], the
order of homogeneity of limit profiles does not depend on s and it is always an integer. This
is a consequence of the regularity of the eigenfunctions of (4.19), see Section 4.7 for further
details. In particular, the eigenfunctions of (4.19), after an even reflection through the equator
θN+1 = 0, turn out to be smooth thanks to [120, Theorem 1.1]; therefore, they are much more
regular than the solutions of the corresponding problem on the half-sphere appearing in [47]
and presenting mixed boundary conditions, which are responsible for a lower regularity.

Theorem 4.1.2 is proved by passing to the trace in the following blow-up result for solutions
of the extended problem (4.17).

Theorem 4.1.3. Let N > 2s and Ω ⊂ RN be a bounded Lipschitz domain. Let x0 ∈ ∂Ω and
assume that there exist R > 0 and a function g satisfying (4.10), (4.11), and (4.12). Let U
be a non trivial solution to (4.17) in the sense of (4.18), with h satisfying (4.8). Then there
exist m0 ∈ N\ {0} (which is odd in the case N = 1) and eigenfunction Y of (4.19), associated
to the eigenvalue m2

0 +m0(N − 2s), such that, letting z0 = (x0, 0),

λ−m0U(λz + z0) → |z|m0 Ŷ

(
z

|z|

)
as λ → 0+ in H1(B+

1 , y
1−2s), (4.27)

where B+
1 = {z = (x, y) ∈ RN × (0,+∞) : |z| < 1} and U is trivially extended to zero outside

CΩ.

In Theorem 4.6.1 a more precise characterization of the function Ŷ appearing in (4.26)
and (4.27) is given, by writing it as a linear combination of the eigenfunctions Ym0,k with
coefficients computed in (4.134).

From Remark 4.1.1, Theorem 4.1.2 and Theorem 4.1.3 we deduce the following unique
continuation principles.

Corollary 4.1.4. Let N > 2s and Ω ⊂ RN be a bounded Lipschitz domain. Let x0 ∈ ∂Ω and
assume that there exist R > 0 and a function g satisfying (4.10), (4.11), and (4.12). Let u be
a solution to (4.1) in the sense of (4.9) and U be a solution to (4.17) in the sense of (4.18),
with h satisfying (4.8).

(i) If u(x) = O
(
|x− x0|k

)
as x → x0 for any k ∈ N, then u ≡ 0 in Ω.

(ii) If U(z) = O
(
|z − (x0, 0)|k

)
as z → (x0, 0) for any k ∈ N, then U ≡ 0 on CΩ.
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This Chapter is organized as follows. In Section 4.2 we recall some preliminary results
concerning functional inequalities and trace operators. In Section 4.3 we apply the local
diffeomorphism introduced in [12], see also [47, Section 2], to write an equivalent formulation
of problem (4.17) on a domain with a straightened lateral boundary in a neighbourhood of
x0, see (4.35). In Section 4.4 we study the Almgren-type frequency function associated to the
auxiliary problem (4.35) and prove its boundedness, which is used in Section 4.5 to develop
a blow-up analysis. Finally in Section 4.6 we prove our main results and in Section 4.7 we
compute the eigenvalues of problem (4.19).

4.2 Preliminaries
In this section prove some preliminary results concerning functional inequalities and trace
operators.

Remark 4.2.1. Since B+
r ⊂ B′

r×(0,+∞), the trivial extension to 0 is a linear and continuous
operator from H1

0,S+
r

(B+
r , y

1−2s) to H1
0,L(CB′

r
, y1−2s) (see (3.2)).

Proposition 4.2.2. For every r > 0 the restriction to H1
0,S+

r
(B+

r , y
1−2s), (see (3.2)) of the

trace operator
Tr : H1(B+

r , y
1−2s) → Hs(B′

r),

defined in Section 3.1, coincides with the restriction of TrB′
r

to H1
0,S+

r
(B+

r , y
1−2s). In partic-

ular, for every r > 0,
Tr(H1

0,S+
r

(B+
r , y

1−2s)) ⊆ Hs(B′
r).

Proof. By Remark 4.2.1, the operator TrB′
r
, see (4.15), is well defined onH1

0,S+
r

(B+
r , y

1−2s) and
TrB′

r
(H1

0,S+
r

(B+
r , y

1−2s)) ⊆ Hs(B′
r). Furthermore for every u ∈ C∞

c (B+
r ∪B′

r), we have Tr(u) =
u|B′

r×{0}
= TrB′

r
(u). By density we conclude that Tr and TrB′

r
are equal on H1

0,S+
r

(B+
r , y

1−2s).

The following inequality will be used to obtain estimates on the Almgren frequency func-
tion.

Proposition 4.2.3. Let ωN be the N -dimensional Lebesgue measure of the unit ball in RN .
For any r > 0, v ∈ H1(B+

r , y
1−2s) and f ∈ L

N
2s

+ε(B′
r) with ε > 0, we have∫

B′
r

f | Tr(v)|2 dx ≤ ηf (r)
(∫

B+
r

y1−2s|∇v|2 dz + N − 2s
2r

∫
S+

r

y1−2sv2 dS

)
, (4.28)

where

ηf (r) := SN,sω
4s2ε

N(N+2sε)
N ∥f∥

L
N
2s +ε(B′

r)
r

4s2ε
N+2sε . (4.29)

Proof. By the Hölder inequality∫
B′

r

f | Tr(v)|2 dx ≤ ∥Tr(v)∥2
L2∗

s (B′
r) ∥f∥

L
N
2s +ε(B′

r)
ω

4s2ε
N(N+2sε)
N r

4s2ε
N+2sε .

Then (4.28) follows from (3.5).
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4.3 Straightening the boundary
Let x0 ∈ ∂Ω, R > 0 and g satisfy (4.10), (4.11), and (4.12). Up to a suitable choice of the
coordinate system, it is not restrictive to assume that

x0 = 0, g(0) = 0, ∇g(0) = 0.

Proceeding in the same way of 2.2.1, we use the local diffeomorphism F constructed in [47,
Section 2] (see also [12] ) to straighten the boundary of CΩ in a neighbourhood of 0; for the sake
of clarity and completeness we summarize its properties in Propositions 4.3.1 and 4.3.2 below,
referring to [47, Section 2] for their proofs. We consider the variable z = (x, y) ∈ RN × [0,∞)
with x = (x′, xN ) = (x1, · · · , xN ). For future reference we define

MN :=

 IdN−1 0 0
0 −1 0
0 0 1

 , M ′
N :=

(
IdN−1 0

0 −1

)
, (4.30)

where IdN−1 is the identity (N − 1) × (N − 1) matrix.

Proposition 4.3.1. [47, Section 2] There exist F = (F1, . . . , FN+1) ∈ C1,1(RN+1,RN+1) and
r0 > 0 such that F

∣∣
Br0

: Br0 → F (Br0) is a diffeomorphism of class C1,1,

F (x′, 0, 0) = (x′, g(x′), 0) for all y′ ∈ RN−1,

FN (x′, xN , y) = yN + g(x′) for all (x′, xN , y) ∈ RN−1 × R × R,
FN+1(y, t) = t, for all (x, y) ∈ RN × R,
α(x, y) := detJF (x, y) > 0 in Br0 ,

and

F ({(x′, xN , y) ∈ B+
r0 : xN = 0}) = ∂LCΩ ∩ F (B+

r0), (4.31)
F ({(x′, xN , y) ∈ B+

r0 : xN < 0}) = CΩ ∩ F (B+
r0), (4.32)

where ∂LCΩ is defined in (4.14) and JF (x, y) is the Jacobian matrix of F . Furthermore the
following properties hold:

i) JF depends only on the variable y and

JF (x′, xN ) = JF (y) = IdN+1 +O(|x|) as |x| → 0+,

where IdN+1 denotes the identity (N + 1) × (N + 1) matrix and O(|y|) denotes a matrix
with all entries being O(|x|) as |x| → 0+;

ii) α(y) = detJF (x) = 1 +O(|x′|2) +O(xN ) as |y′| → 0+ and yN → 0;

iii) ∂Fi
∂y = ∂FN+1

∂xi
= 0 for any i = 1, . . . , N and ∂FN+1

∂y = 1.

For every r > 0, let
Qr := {(x′, xN , y) ∈ B+

r : xN < 0}, (4.33)
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so that F (Qr0) = CΩ ∩ F (B+
r0) in view of (4.32). If U ∈ H1

0,L(CΩ, y
1−2s) solves (4.17), then

the function
W = U ◦ F ∈ H1(Qr0 , y

1−2s) (4.34)

is a weak solution to {
div(y1−2sA∇W ) = 0, in Qr0 ,

− limy→0+ y1−2sα∂W
∂y = κs,N h̄W, on Q′

r0 ,
(4.35)

where Q′
r := {(x′, xN ) ∈ B′

r : xN < 0} for all r > 0, A = A(x) is the (N + 1) × (N + 1)
matrix-valued function given by

A(x) := (JF (x))−1(JF (x)−1)T |detJF (x)|,

and
h̄(x) = α(y)h(F (x, 0)). (4.36)

As observed in [47, Section 2], A has C0,1 entries
(
aij
)N+1

i,j=1 and can be written as

A(x) = A(x′, xN ) =
(
D(x′, xN ) 0

0 α(x′, xN )

)
, (4.37)

with
D(x′, xN ) =

(
IdN−1 +O(|x′|2) +O(yN ) O(xN )

O(xN ) 1 +O(|x′|2) +O(yN )

)
, (4.38)

where IdN−1 is the identity (N − 1) × (N − 1) matrix, O(xN ) and O(|x′|2) denote blocks of
matrices with all elements being O(xN ) as xN → 0 and O(|x′|2) as |x′| → 0 respectively. In
particular, in view of (4.37)-(4.38) we have

aNj(x′, 0) = ajN (x′, 0) = 0 for all j = 1, . . . , N − 1. (4.39)

Having in mind to reflect our problem through the hyperplane yN = 0, we define

Ã(x′, xN ) :=
{
A(x′, xN ), if xN ≤ 0,
MNA(x′,−xN )MN , if xN > 0,

(4.40)

D̃(x′, xN ) :=
{
D(x′, xN ), if xN ≤ 0,
M ′

ND(x′,−xN )M ′
N , if xN > 0,

(4.41)

with MN ,M
′
N as in (4.30), and

α̃(x′, xN ) :=
{
α(x′, xN ), if xN ≤ 0,
α(x′,−xN ), if xN > 0,

(4.42)

where α(x) = det JF (x). We observe that the Lipschitz continuity of A and (4.39) imply that
the entries of Ã are of class C0,1. Furthermore, Ã is symmetric and, possibly choosing r0
smaller from the beginning,

∥Ã(x)∥L(RN+1,RN+1) ≤ 2 and 1
2 |z|2 ≤ Ã(x)z ·z ≤ 2|z|2 for all z ∈ RN+1, y ∈ B′

r0 , (4.43)
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where ∥·∥L(RN+1,RN+1) denotes the operator norm on the space of bounded linear operators
from RN+1 into itself. We also observe that (4.37)-(4.38) imply the expansion

Ã(x) = IdN+1 +O(|x|) as |x| → 0+. (4.44)

Letting Ã and D̃ be as in (4.40)-(4.41), we define

µ(z) := Ã(x)z · z
|z|2

and β(z) := Ã(x)z
µ(z) for every z = (x, t) ∈ B+

r0 \ {0}, (4.45)

and
β′(x) := D̃(x)x

µ(x, 0) for every y ∈ B′
r0 . (4.46)

For every z = (z1, . . . , zN+1) ∈ RN+1 and x ∈ B′
r0 , dÃ(x)zz is defined as the vector of RN+1

with i-th component given by

(dÃ(x)zz)i =
N+1∑
h,k=1

∂ãkh

∂zi
(x)zhzk, i = 1, · · · , N + 1, (4.47)

where (ãk,h)N+1
k,h=1 are the entries of the matrix Ã in (4.40).

Proposition 4.3.2. Let µ, β, and β′ be as in (4.45)-(4.46). Then, possibly choosing r0
smaller from the beginning, we have

1
2 ≤ µ(z) ≤ 2 for any z ∈ B+

r0 \ {0}, (4.48)

µ(z) = 1 +O(|z|), ∇µ(z) = O(1) as |z| → 0+. (4.49)

Moreover β and β′ are well-defined and

β(z) = z +O(|z|2) = O(|z|) as |z| → 0+, (4.50)
Jβ(z) = Ã(x) +O(|z|) = IdN+1 +O(|z|), div(β)(z) = N + 1 +O(|z|) as |z| → 0+,(4.51)
β′(x) = x+O(|x|2) = O(|x|), div(β′)(x) = N +O(|x|) as |x| → 0+. (4.52)

Proof. (4.48) easily follows from (4.43). We refer to [47, Lemma 2.1] for the proof of (4.49).
As a direct consequence, β and β′ are well-defined. From (4.50) and (4.51), whose proof is
contained in [47, Lemma 2.2], we derive (4.52), after noting that β′ coincides with the first
N -components of the vector β.

Remark 4.3.3. From the Lipschitz continuity of Ã observed above and Proposition 4.3.2 we
have

Ã ∈ C0,1(B+
r0 ,R

(N+1)2), µ ∈ C0,1(B+
r0), 1

µ
∈ C0,1(B+

r0), β ∈ C0,1(B+
r0 ,R

N+1) (4.53)

Jβ ∈ L∞(B+
r0 ,R

(N+1)2), div(β) ∈ L∞(B+
r0), β′ ∈ L∞(B′

r0 ,R
N ), div(β′) ∈ L∞(B′

r0).

Remark 4.3.4. If v ∈ H1
0,L(CΩ, y

1−2s), then (v ◦ F )|Qr0
∈ H1(Qr0 , y

1−2s) by Proposition
4.3.1, and

(v ◦ F )(z) = 0 for any z ∈ {(x′, xN , y) ∈ B+
r0 : xN = 0} (4.54)

in view of (4.31). Equality (4.54) is meant in the sense of the classical theory of traces for
Sobolev spaces; this is possible thanks to the fact that H1(E, y1−2s) ⊂ W 1,1(E) for any
bounded open set E ⊆ RN × (0,∞).
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If W is a solution to (4.35), let W̃ be defined as follows

W̃ (x′, xN , y) :=
{
W (x′, xN , y), if (x′, xN , y) ∈ Qr0 ,

−W (x′,−xN , y), if (x′, xN , y) ∈ B+
r0 and yN > 0.

(4.55)

For the sake of convenience we will still denote W̃ with W . Letting h̄ be defined in (4.36),
we also consider the following function

h̃(x′, xN ) :=
{
h̄(x′, xN ), if (x′, xN ) ∈ Q′

r0 ,

h̄(x′,−xN ), if (x′, xN ) ∈ B′
r0 , and xN > 0.

(4.56)

It is easy to verify that W ∈ H1(B+
r0 , y

1−2s) thanks to Remark 4.3.4 and

h̃ ∈ W 1, N
2s

+ε(B′
r0) (4.57)

thanks to (4.8), (4.36) and Proposition 4.3.1. Furthermore W weakly solves{
div(y1−2sÃ∇W ) = 0, on B+

r0 ,

− limy→0+ y1−2sα̃∂W
∂y = κs,N h̃Tr(W ), on B′

r0 ,
(4.58)

with α̃ defined in (4.42), h̃ in (4.56) and Ã in (4.40), namely∫
B+

r0

y1−2sÃ∇W · ∇ϕdz = κs,N

∫
B′

r0

h̃Tr(W ) Tr(ϕ) dy for all ϕ ∈ H1
0,S+

r0
(B+

r1 , y
1−2s). (4.59)

Thanks to Proposition 4.2.2, (4.57) and the Hölder inequality, the second member of (4.59)
is well-defined.

Remark 4.3.5. In [75, Theorem 2.1] it is proved that, if W ∈ H1(B+
r0 , y

1−2s) is a weak
solution to (4.59) with Ã and h̃ satisfying (4.37), (4.40), (4.53), (4.48), (4.57), then

∇xW ∈ H1(B+
r , y

1−2s) and y1−2s∂W

∂y
∈ H1(B+

r , y
2s−1) (4.60)

for all r ∈ (0, r0). Furthermore

∥∇xW∥H1(B+
r ,y1−2s) +

∥∥∥∥y1−2s∂W

∂y

∥∥∥∥
H1(B+

r ,y2s−1)
≤ C ∥W∥H1(B+

r0 ,y1−2s)

for a positive constant C > 0 independent of W . More precisely, C depends only on N , s, r,
r0, ∥h̃∥

W 1, N
2s (B′

r0 )
, ∥Ã∥

W 1,∞(B+
r0 ,R(N+1)2 ).

Remark 4.3.6. If W ∈ H1(B+
r0 , y

1−2s) is a weak solution to (4.59), the regularity result (4.60)
and (3.4) ensure that, for all ϕ ∈ H1(B+

r0 , y
1−2s) and r ∈ (0, r0), y1−2s Tr1(D̃∇xW ·x) Tr1 ϕ ∈

L1(S+
r ); moreover the function

r 7→
∫

S+
r

y1−2s(D̃∇xW · x)ϕdS
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is continuous in (0, r0). Furthermore, since y1−2s ∂W
∂y ∈ H1(B+

r , y
2s−1) for all r ∈ (0, r0) by

(4.60), for all ϕ ∈ H1(B+
r0 , y

1−2s) and r ∈ (0, r0) we also have y1−2sα̃∂W
∂y yϕ ∈ W 1,1(B+

r ), so
that Tr1(y1−2sα̃∂W

∂y yϕ) ∈ L1(S+
r ); moreover the function

r 7→
∫

S+
r

y1−2sα̃
∂W

∂y
yϕ dS

is continuous in (0, r0). We conclude that, for all ϕ ∈ H1(B+
r0 , y

1−2s), the function

y1−2s(Ã∇W · z)ϕ = y1−2s(D̃∇xW · x)ϕ+ y1−2sα̃
∂W

∂y
tϕ

has a trace on S+
r for all r ∈ (0, r0) and the function

r 7→
∫

S+
r

y1−2s(Ã∇W · z)ϕdS

is continuous in (0, r0).

The following result provides an integration by parts formula which will be useful in
Section 4.5.

Proposition 4.3.7. Let W be a weak solution to (4.58). For all r ∈ (0, r0) and ϕ ∈
H1(B+

r0 , y
1−2s)∫

B+
r

y1−2sÃ∇W · ∇ϕdz = 1
r

∫
S+

r

y1−2s(Ã∇W · z)ϕdS + κs,N

∫
B′

r

h̃Tr(W ) Tr(ϕ) dx. (4.61)

Proof. By density it is enough to prove (4.61) for ϕ ∈ C∞(B+
r0). Let r ∈ (0, r0). For every

n ∈ N, let

ηn(z) :=


1, if 0 ≤ |z| ≤ r − 1

n ,

n(r − |z|), if r − 1
n ≤ |z| ≤ r,

0, if |z| ≥ r.

Testing (4.59) with ϕηn and passing to the limit as n → ∞, we obtain (4.61) thanks to the
integral mean value theorem and Remark 4.3.6.

Remark 4.3.8. For all r ∈ (0, r0] and any v ∈ H1(B+
r , y

1−2s), thanks to (4.28), (4.43) and
(4.48),∫

B+
r

y1−2s|∇v|2 dz ≤ 2
∫

B+
r

y1−2sÃ∇v · ∇v dz − 2κN,s

∫
B′

r

h̃| Tr(v)|2 dx

+ 2κN,sηh̃(r)
(∫

B+
r

y1−2s|∇v|2 dz + N − 2s
r

∫
S+

r

y1−2sµv2 dS

)
.

Therefore, if ηh̃(r) < 1
2κN,s

,

∫
B+

r

y1−2s|∇v|2 dz ≤ 2
1 − 2κN,sηh̃(r)

(∫
B+

r

y1−2sÃ∇v · ∇v dz − κN,s

∫
B′

r

h̃| Tr(v)|2 dx
)

+
2(N − 2s)κN,sηh̃(r)
(1 − 2κN,sηh̃(r))r

∫
S+

r

y1−2sµv2 dS. (4.62)
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4.4 The Monotonicity Formula
Let W be a non trivial weak solution of (4.58). For any r ∈ (0, r0] we define the height
function and the energy function as

H(r) := 1
rN+1−2s

∫
S+

r

y1−2sµW 2 dS, (4.63)

D(r) := 1
rN−2s

(∫
B+

r

y1−2sÃ∇W · ∇W dz − κN,s

∫
B′

r

h̃| TrW |2 dx
)
, (4.64)

respectively. Eventually choosing r0 smaller from the beginning, we may assume that

ηh̃(r) < 1
4κN,s

for all r ∈ (0, r0], (4.65)

so that (4.62) holds for every r ∈ (0, r0].

Proposition 4.4.1. Let H and D be as in (4.63) and (4.64). Then H ∈ W 1,1
loc ((0, r0]) and

H ′(r) = 2
rN+1−2s

∫
S+

r

y1−2sµW
∂W

∂ν
dS +H(r)O(1) as r → 0+ (4.66)

in the sense of distributions and almost everywhere, where ν is the outer normal vector to
B+

r on S+
r , i.e. ν(z) := z

|z| . Moreover, almost everywhere we have

H ′(r) = 2
rN+1−2s

∫
S+

r

y1−2s(Ã∇W · ν)W dS +H(r)O(1) as r → 0+ (4.67)

and
H ′(r) = 2

r
D(r) +H(r)O(1) as r → 0+. (4.68)

Proof. The proof is similar to that of [47, Lemma 3.1] thus we omit it.

Proposition 4.4.2. We have H(r) > 0 for every r ∈ (0, r0].

Proof. Let us assume by contradiction that there exists r ∈ (0, r0] such that H(r) = 0. Then,
from (4.63) and (4.48) we deduce that W ≡ 0 on S+

r . Thus we can test (4.59) with W ,
obtaining that

0 =
∫

B+
r

y1−2sÃ∇W · ∇W dz − κN,s

∫
B′

r

h̃| Tr(W )|2 dx ≥
(1

2 − κN,sηh̃(r)
)

∥∇W∥2
L2(B+

r ,y1−2s) ,

thanks to (4.62). Then, by (4.65) we can conclude that W ≡ 0 on B+
r ; this implies that

W ≡ 0 on B+
r0 by classical unique continuation principles for second order elliptic operators

with Lipschitz coefficients (see e.g. [79]), giving rise to a contradiction.

The following proposition contains a Pohozaev-type identity for problem (4.58). For its
proof we refer to [75, Proposition 2.3], where a more general version is established exploiting
some Sobolev-type regularity results.
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Proposition 4.4.3. [75, Proposition 2.3] Let W be a weak solution to equation (4.58). Then,
for a.e. r ∈ (0, r0),∫

S+
r

y1−2sÃ∇W · ∇W dS − κN,s

∫
S′

r

h̃| Tr(W )|2 dS′

= 2
∫

S+
r

y1−2s |Ã∇W · ν|2

µ
dS − κN,s

r

∫
B′

r

(divy(β′)h̃+ β′ · ∇h̃)| Tr(W )|2 dy

+ 1
r

∫
B+

r

y1−2sÃ∇W · ∇W div(β) dz − 2
r

∫
B+

r

y1−2sJβ(Ã∇W ) · ∇W dz

+ 1
r

∫
B+

r

y1−2s(dÃ∇W ∇W ) · β dz + 1 − 2s
r

∫
B+

r

y1−2s α̃

µ
Ã∇W · ∇W dz, (4.69)

where µ and β are defined in (4.45), α̃ in (4.42), β′ in (4.46), ν is the outer normal vector
to B+

r on S+
r , i.e. ν(z) = z

|z| , and dS′ denotes the volume element on (N − 1)-dimensional
spheres.

Remark 4.4.4. As in Remark 4.3.6, by the Coarea Formula we have∫
B′

r0

|h̃|| Tr(W )|2 dx =
∫ r0

0

(∫
S′

ρ

|h̃|| Tr(W )|2 dS′
)
dρ,

hence ρ →
∫

S′
ρ
h̃| Tr(W )|2 dS′ is a well-defined L1(0, r0)-function, as a consequence of (4.57),

(3.5) and the Hölder inequality.

Proposition 4.4.5. Let D be as in (4.64). Then D ∈ W 1,1
loc ((0, r0]) and

D′(r) = 2r2s−N
∫

S+
r

y1−2s |Ã∇W · ν|2

µ
dS +O

(
r−1+ 4s2ε

N+2sε

)[
D(r) + N − 2s

2 H(r)
]

(4.70)

as r → 0+, in the sense of distributions and almost everywhere.

Proof. By the Coarea Formula D ∈ W 1,1
loc ((0, r0]) and

D′(r) = (2s−N)r2s−N−1
(∫

B+
r

y1−2sÃ∇W · ∇W dz − κN,s

∫
B′

r

h̃| Tr(W )|2 dx
)

+ r2s−N

(∫
S+

r

y1−2sÃ∇W · ∇W dS − κN,s

∫
S′

r

h̃| Tr(W )|2 dS′
)

(4.71)

a.e. and in the sense of distributions in (0, r0). Using (4.69) to estimate the second term on
the right hand side of (4.71), for a.e. r ∈ (0, r0) we have

D′(r) = (2s−N)r2s−N−1
(∫

B+
r

y1−2sÃ∇W · ∇W dz − κN,s

∫
B′

r

h̃| Tr(W )|2 dx
)

+ r2s−N

(
2
∫

S+
r

y1−2s |Ã∇W · ν|2

µ
dS − κN,s

r

∫
B′

r

(divy(β′)h̃+ β′ · ∇h̃)| Tr(W )|2 dy
)

+ r2s−N
(1
r

∫
B+

r

y1−2sÃ∇W · ∇W div(β) dz − 2
r

∫
B+

r

y1−2sJβ(Ã∇W ) · ∇W dz

)
+ r2s−N

(1
r

∫
B+

r

y1−2s(dÃ∇W∇W ) · β dz + 1 − 2s
r

∫
B+

r

y1−2s α̃

µ
Ã∇W · ∇W dz

)
. (4.72)
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Furthermore, thanks to point ii) of Proposition 4.3.1, (4.42), (4.43), (4.48), (4.49), (4.50),
(4.51), and (4.62), we deduce that

r2s−N−1
∫

B+
r

y1−2s
[(

2s−N + div(β) + (1 − 2s) α̃
µ

)
Ã∇W · ∇W − 2Jβ(Ã∇W ) · ∇W

]
dz

+ r2s−N−1
∫

B+
r

y1−2s(dÃ∇W ∇W ) · β dz = O(r) r2s−N−1
∫

B+
r

y1−2s|∇W |2 dz

= O(1)
[
D(r) + N − 2s

2 H(r)
]

as r → 0+, (4.73)

where we used also the fact that dÃ∇W ∇W = O(1)|∇W |2 as r → 0+ by (4.47) and (4.53).
In addition, recalling that h̃ ∈ W 1, N

2s
+ε(B′

r1), from (4.28), (4.29), (4.53) and (4.62) it
follows that

r2s−N−1
∫

B′
r

[(2s−N + divy(β′))h̃+ β′ · ∇h̃]| Tr(W )|2 dx

= O

(
r−1+ 4s2ε

N+2sε

)[
D(r) + N − 2s

2 H(r)
]

(4.74)

as r → 0+. Combining (4.72), (4.73) and (4.74), we obtain (4.70).

For every r ∈ (0, r0] we define the frequency function

N (r) := D(r)
H(r) . (4.75)

Definition (4.75) is well-posed thanks to Proposition 4.4.2.

Proposition 4.4.6. We have N ∈ W 1,1
loc ((0, r0]) and

N (r) > −N − 2s
2 for every r ∈ (0, r0]. (4.76)

Furthermore, if ν(z) := z
|z| is the outer normal vector to B+

r on S+
r and

V(r) := 2r

(∫
S+

r
y1−2sµW 2 dS

) (∫
S+

r
y1−2s |A∇W ·ν|2

µ dS
)

−
(∫

S+
r
y1−2sWA∇W · ν dS

)2

(∫
S+

r
y1−2sµW 2 dS

)2 ,

then
V(r) ≥ 0 for a.e. r ∈ (0, r0) (4.77)

and, for a.e. r ∈ (0, r0),

N ′(r) − V(r) = O

(
r−1+ 4s2ε

N+2sε

)[
N (r) + N − 2s

2

]
as r → 0+. (4.78)

Proof. Since D ∈ W 1,1
loc ((0, r0]) and 1

H ∈ W 1,1
loc ((0, r0]) by Proposition 4.4.1 and Proposition

4.4.2, then N ∈ W 1,1
loc ((0, r0]). Furthermore we recall that (4.62) holds for every r ∈ (0, r1],

thus
N (r) ≥ −κN,s(N − 2s)ηh̃(r), (4.79)
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for every r ∈ (0, r0] and, in virtue of this, (4.76) directly follows from (4.65). Moreover (4.77)
is a consequence of the Cauchy-Schwarz inequality in L2(S+

r , y
1−2s). From (4.67), (4.68) and

(4.70) we deduce that

N ′(r) =D′(r)H(r) −D(r)H ′(r)
(H(r))2 =

D′(r)H(r) − r
2(H ′(r))2 +O(r)H(r)H ′(r)

(H(r))2

=V(r) +O(r) +O(r−1+ 4s2ε
N+2sε )

[
N (r) + N − 2s

2

]
+ O(r−N+2s)

H(r)

∫
S+

r

y1−2s(A∇W · ν)W dS (4.80)

as r → 0+. In order to deal with the last term in (4.80), we observe that, for a.e. r ∈ (0, r0),∫
S+

r

y1−2s(A∇W · ν)W dS = rN−2sD(r) +H(r)O(rN+1−2s) as r → 0+,

in virtue of (4.67) and (4.68). Thus, substituting into (4.80), we conclude that

N ′(r) = V(r) +O(r−1+ 4s2ε
N+2sε )

[
N (r) + N − 2s

2

]
as r → 0+,

where we have used that 4s2ε
N+2sε < 1 since ε ∈ (0, 1) and N > 2s. Estimate (4.78) is thereby

proved.

Proposition 4.4.7. There exists a constant C > 0 such that, for every r ∈ (0, r0],

N (r) ≤ C. (4.81)

Proof. From (4.77) and (4.78) we deduce that there exists a constant c > 0 such that(
N (r) + N − 2s

2

)′
≥ −c r−1+ 4s2ε

N+2sε

(
N (r) + N − 2s

2

)
for a.e. r ∈ (0, r1), (4.82)

for some r1 ∈ (0, r0) sufficiently small. Hence, thanks to (4.76), we are allowed to divide each
member of (4.82) by N (r) + N−2s

2 , obtaining that(
log

(
N (r) + N − 2s

2

))′
≥ −c r−1+ 4s2ε

N+2sε for a.e. r ∈ (0, r1).

Then, integrating over (r, r1) with r < r1, we have

N (r) ≤ −N − 2s
2 + exp

(
c
N + 2sε

4s2ε
r

4s2ε
N+2sε

1

)(
N (r1) + N − 2s

2

)
for every r ∈ (0, r1),

which proves (4.81), taking into account the continuity of N in (0, r0].

Proposition 4.4.8. There exists the limit

γ := lim
r→0+

N (r). (4.83)

Moreover γ is finite and γ ≥ 0.
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Proof. Combining (4.81) and (4.82), we infer that(
N (r) + N − 2s

2

)′
≥ −c r−1+ 4s2ε

N+2sε

(
C + N − 2s

2

)
(4.84)

for a.e. r ∈ (0, r1), hence(
N − 2s

2 + N (r) + c

(
N − 2s

2 + C

)
N + 2sε

4s2ε
r

4s2ε
N+2sε

)′
≥ 0 for a.e. r ∈ (0, r1).

From this, it follows in particular that the limit γ in (4.83) exists. Moreover, by (4.76) and
(4.81) γ is finite, whereas (4.79) implies that γ ≥ 0.

Proposition 4.4.9. There exist c0, c̄ > 0 and r̄ ∈ (0, r0) such that

H(r) ≤ c0 r
2γ for all r ∈ (0, r0] (4.85)

and
H(Rr) ≤ Rc̄H(r) for all R ≥ 1 and r ∈

(
0, r̄

R

]
. (4.86)

Furthermore, for any σ > 0 there exists a constant cσ > 0 such that

H(r) ≥ cσr
2γ+σ for all r ∈ (0, r0]. (4.87)

Proof. By (4.83) we have N (r) = γ +
∫ r

0 N ′(t) dt; hence from (4.68) it follows that

H ′(r)
H(r) = 2

r
N (r) +O(1) = 2

r

∫ r

0
N ′(t) dt+ 2γ

r
+O(1). (4.88)

From (4.84) and up to choosing r1 smaller, it follows that, for a.e. r ∈ (0, r1),

H ′(r)
H(r) ≥ −κr−1+ 4s2ε

N+2sε + 2γ
r

for some positive constant κ > 0. Then an integration over (r, r1) yields

log
(
H(r1)
H(r)

)
≥ −κN + 2sε

4s2ε

(
r

4s2ε
N+2sε

1 − r
4s2ε

N+2sε

)
+ log

(
r1
r

)2γ

and thus
H(r) ≤ H(r1)

r2γ
1

exp
(
κ
N + 2sε

4s2ε
r

4s2ε
N+2sε

1

)
r2γ

for all r ∈ (0, r1], thus implying (4.85) thanks to the continuity of H in (0, r0].
To prove (4.86), we observe that (4.88) and (4.81) imply that, for some r̄ ∈ (0, r0) and

c̄ > 0,
H ′(r)
H(r) ≤ c̄

r
for all r ∈ (0, r̄),

whose integration over (r, rR) directly gives (4.86).
In view of Proposition 4.4.8, for any σ > 0 there exists rσ ∈ (0, r0] such that

H ′(r)
H(r) = 2

r
N (r) +O(1) ≤ 2γ + σ

r
for all r ∈ (0, rσ].

Integrating over (r, rσ) and recalling that H is continuous in (0, r0], we deduce (4.87).
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Proposition 4.4.10. There exists the limit limr→0+ r−2γH(r) and it is finite.
Proof. By (4.85) it is sufficient to show that the limit does exist. In view of (4.68) we have(

H(r)
r2γ

)′
= r2γH ′(r) − 2γr2γ−1H(r)

r4γ
= 2r−2γ−1(D(r) − γH(r)) + r−2γO(1)H(r)

= 2r−2γ−1H(r) (N (r) − γ + rO(1))

= 2r−2γ−1H(r)
(∫ r

0

[
N ′(t) − V(t)

]
dt+

∫ r

0
V(t) dt+ rO(1)

)
as r → 0+. Integrating over (r, r̃) with r̃ ∈ (0, r0) small, we obtain that

H(r̃)
r̃2γ

− H(r)
r2γ

=
∫ r̃

r
2ρ−2γ−1H(ρ)

(∫ ρ

0
V(t) dt

)
dρ

+
∫ r̃

r

[
2ρ−2γH(ρ)O(1) + 2ρ−2γ−1H(ρ)

(∫ ρ

0

[
N ′(t) − V(t)

]
dt

)]
dρ. (4.89)

Letting
f(ρ) := 2ρ−2γH(ρ)O(1) + 2ρ−2γ−1H(ρ)

(∫ ρ

0

[
N ′(t) − V(t)

]
dt

)
,

from (4.78), (4.81) and (4.85) it follows that f ∈ L1(0, r̃) and hence there exists the limit

lim
r→0+

∫ r̃

r
f(ρ) dρ =

∫ r̃

0
f(ρ) dρ < +∞.

On the other hand, in view of (4.77), there exists the limit

lim
r→0+

∫ r̃

r
2ρ−2γ−1H(ρ)

(∫ ρ

0
V(t) dt

)
dρ.

Therefore we can conclude thanks to (4.89).

4.5 The blow-up analysis
In the present section, we aim to classify the possible vanishing orders of solutions to (4.58).
To this purpose, let W be a non trivial weak solution to (4.58) and H be defined in (4.63).
For any λ ∈ (0, r0], we consider the function

V λ(z) := W (λz)√
H(λ)

. (4.90)

It is easy to verify that V λ weakly solves{
div(y1−2sÃ(λ·)∇V λ) = 0, on B+

r0λ−1 ,

− limy→0+ y1−2sα̃(λ·)∂V λ

∂y = κs,Nλ
2sh̃(λ·) Tr(V λ), on B′

r0λ−1 ,

where we have defined α̃ in (4.42). It follows that, for any λ ∈ (0, r0],∫
B+

1

y1−2sÃ(λ·)∇V λ · ∇ϕdz − κs,Nλ
2s
∫

B′
1

h̃(λ·) Tr(V λ) Tr(ϕ) dy = 0 (4.91)

for every ϕ ∈ H1
0,S+

1
(B+

1 , y
1−2s), (see (3.2)). Furthermore by (4.63) and (4.90)∫

S+
θ1−2s

N+1µ(λθ)|V λ(θ)|2 dS = 1 for any λ ∈ (0, r0]. (4.92)
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Proposition 4.5.1. For every R ≥ 1, the family of functions {V λ : λ ∈ (0, r̄
R ]} is bounded

in H1(B+
R , y

1−2s).

Proof. By (4.62) and (4.86), for all λ ∈ (0, r̄
R ] with r̄ as in Lemma 4.4.9, we have∫

B+
R

y1−2s|∇V λ|2 dz = λ2s−N

H(λ)

∫
B+

λR

y1−2s|∇W |2 dz ≤ λ2s−NRc̄

H(λR)

∫
B+

λR

y1−2s|∇W |2 dz

≤ 2Rc̄+N−2s

1 − 2κN,sηh̃(λR)N (λR) +
2(N − 2s)Rc̄+N−2sκN,sηh̃(λR)

1 − 2κN,sηh̃(λR) ,

which, together with (4.65) and (4.81), allows us to deduce that {∇V λ : λ ∈ (0, r̄
R ]} is

uniformly bounded in L2(B+
R , y

1−2s). On the other hand, (4.48), a scaling argument, and
(4.86) imply that∫

S+
R

y1−2s|V λ|2dS = λ−N−1+2s

H(λ)

∫
S+

Rλ

y1−2sW 2dS ≤ 2RN+1−2sH(Rλ)
H(λ) ≤ 2RN+1−2s+c̄,

so that the claim follows from (3.7).

Proposition 4.5.2. Let W be a non trivial weak solution to (4.58). Let γ be as in Proposition
4.4.8. There exists m0 ∈ N \ {0} (which is odd in the case N = 1) such that

γ = m0. (4.93)

Furthermore, for any sequence {λn} such that λn → 0+ as n → ∞, there exist a subsequence
{λnk

} and an eigenfunction Ψ of problem (4.19) associated with the eigenvalue µm0 = m2
0 +

m0(N − 2s) such that ∥Ψ∥L2(S+,θ1−2s
N+1 ) = 1 and

W (λnk
z)√

H(λnk
)

→ |z|γΨ
(
z

|z|

)
as k → +∞ strongly in H1(B+

1 , y
1−2s). (4.94)

Proof. Let W be a non trivial weak solution to (4.58) and {λn} be a sequence such that
λn → 0+ as n → +∞. Thanks to Proposition 4.5.1, there exist a subsequence {λnk

} and
V ∈ H1(B+

1 , y
1−2s) such that

V λnk ⇀ V weakly in H1(B+
1 , y

1−2s) as k → +∞. (4.95)

For sufficiently large k we have λnk
∈ (0, r0) and thus B+

1 ⊂ B+
r0/λnk

, hence from (4.91) we
deduce that∫

B+
1

y1−2sÃ(λnk
·)∇V λnk · ∇ϕdz = κs,Nλ

2s
nk

∫
B′

1

h̃(λnk
·) Tr(V λnk ) Tr(ϕ) dy (4.96)

for every ϕ ∈ H1
0,S+

1
(B+

1 , y
1−2s) (see (3.2)). In order to study what happens as k → +∞, we

notice that the term on the left hand side of (4.96) can be rewritten as follows∫
B+

1

y1−2sÃ(λnk
·)∇V λnk · ∇ϕdz

=
∫

B+
1

y1−2s(Ã(λnk
·) − IdN+1)∇V λnk · ∇ϕdz +

∫
B+

1

y1−2s∇V λnk · ∇ϕdz. (4.97)
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Therefore, in view of (4.44), Proposition 4.5.1 and (4.95), we conclude that

lim
k→+∞

∫
B+

1

y1−2sÃ(λnk
·)∇V λnk · ∇ϕdz =

∫
B+

1

y1−2s∇V · ∇ϕdz. (4.98)

As for the right hand side in (4.96), we have∣∣∣∣λ2s
nk

∫
B′

1

h̃(λnk
·) Tr(V λnk ) Tr(ϕ) dy

∣∣∣∣ ≤ λ2s
nk
ηh̃(λnk

·)(1)

×
(∫

B+
1

y1−2s|∇ϕ|2 dy
)1

2
(∫

B+
1

y1−2s|∇V λnk |2 dz + N − 2s
2

∫
S+
θ1−2s

N+1 |V λnk |2 dS
)1

2

(4.99)

thanks to Hölder’s inequality and (4.28). By (4.29) and the change of variable x 7→ λnk
x, we

obtain that

λ2s
nk
ηh̃(λnk

·)(1) = SN,sω
4s2ε

N(N+2sε)
N λ2s

nk
∥h̃(λnk

·)∥
L

N
2s +ε(B′

1)

= SN,sω
4s2ε

N(N+2sε)
N ∥h̃∥

L
N
2s +ε(B′

λnk
)
λ

4s2ε
N+2sε
nk . (4.100)

Putting together (4.99) and (4.100), thanks to Proposition 4.5.1, (4.92), and (4.48) we infer
that

lim
k→+∞

λ2s
nk

∫
B′

1

h̃(λnk
·) Tr(V λnk ) Tr(ϕ) dy = 0. (4.101)

Passing to the limit as k → +∞ in (4.96) we conclude that V weakly solves the following
problem: {

div(y1−2s∇V ) = 0, in B+
1 ,

limy→0+ y1−2s ∂V
∂y = 0, on B′

1.
(4.102)

In particular V is smooth on B+
1 and V ̸≡ 0 since, by (4.49), (4.95) and the compactness of

the trace operator in (3.4), (4.92) leads to∫
S+
θ1−2s

N+1V
2 dS = 1. (4.103)

Now we aim to show that, along a further subsequence,

V λnk → V strongly in H1(B+
1 , y

1−2s) as k → +∞. (4.104)

To this purpose, we first notice that a change of variables in (4.61) yields∫
B+

1

y1−2sÃ(λnk
·)∇V λnk · ∇ϕdz −

∫
S+
θ1−2s

N+1 Ã(λnk
·)∇V λnk · z ϕ dS

= κs,Nλ
2s
nk

∫
B′

1

h̃(λnk
·) Tr(V λnk ) Tr(ϕ) dy (4.105)

for any ϕ ∈ H1(B+
1 , y

1−2s) and k sufficiently large.
From Proposition 4.5.1 and the regularity result contained in [75, Theorem 2.1] and re-

called in Remark 4.3.5, it follows that {∇xV
λnk } and

{
y1−2s ∂V λnk

∂y

}
are uniformly bounded
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in k in the spaces H1(B+
1 , y

1−2s) and H1(B+
1 , y

2s−1) respectively. Then, by the continuity
of the trace operator Tr1 from H1(B+

1 , y
1−2s) to L2(S+, θ1−2s

N+1 ) and from H1(B+
1 , y

2s−1) to
L2(S+, θ2s−1

N+1 ), we have that {Tr1(∇xV
λnk )} is bounded in

(
L2(S+, θ1−2s

N+1 )
)N and

{
y1−2s ∂V λnk

∂y

}
is bounded in L2(S+, θ2s−1

N+1 ). Therefore

∫
S+
θ1−2s

N+1 |∇V λnk |2 dS =
∫
S+
θ1−2s

N+1 |∇xV
λnk |2 dS +

∫
S+
θ2s−1

N+1

∣∣∣∣∣θ1−2s
N+1

∂V λnk

∂t

∣∣∣∣∣
2

dS

is bounded uniformly with respect to k. Taking into account (4.44), it follows that there
exists f ∈ L2(S+, θ1−2s

N+1 ) such that, up to a further subsequence,

Ã(λnk
·)∇V λnk · z ⇀ f weakly in L2(S+, θ1−2s

N+1 ) as k → +∞. (4.106)

Thus by (4.98) and after proving (4.101) when ϕ ∈ H1(B+
1 , y

1−2s) with the same argument
(i.e. combining (4.28) with (4.100)), passing to the limit as k → +∞ in (4.105) we obtain
that ∫

B+
1

y1−2s∇V · ∇ϕdz =
∫
S+
θ1−2s

N+1fϕ dS (4.107)

for any ϕ ∈ H1(B+
1 , y

1−2s). Furthermore, by (4.106), combined with (4.95) and compactness
of the trace operator in (3.4), we have

lim
k→+∞

∫
S+
y1−2sÃ(λnk

·)∇V λnk · z V λnk dS =
∫
S+
y1−2sfV dS. (4.108)

Hence, testing (4.105) with V λnk itself, taking into account (4.108), using (4.101) with ϕ =
V λnk , and passing to the limit as k → +∞, we deduce that

lim
k→+∞

∫
B+

1

y1−2sÃ(λnk
·)∇V λnk · ∇V λnk dz =

∫
S+
y1−2sfV dS,

which, by (4.107) tested with V , implies that

lim
k→+∞

∫
B+

1

y1−2sA(λnk
·)∇V λnk · ∇V λnk dz =

∫
B+

1

y1−2s|∇V |2dz. (4.109)

Writing the left hand side in (4.109) as in (4.97), by (4.44) and Proposition 4.5.1 we infer
that

lim
k→+∞

∫
B+

1

y1−2s|∇V λnk |2 dz =
∫

B+
1

y1−2s|∇V |2dz.

This convergence and (4.95), allows us to conclude that ∇V λnk → ∇V in L2(B+
1 , y

1−2s). In
conclusion, combining this with the compactness of the trace operator given in (3.4), (4.104)
easily follows from Remark 3.1.4.

For any r ∈ (0, 1] and k ∈ N we define

Hk(r) := 1
rN+1−2s

∫
S+

r

y1−2sµ(λnk
·)|V λnk |2 dS,

Dk(r) := 1
rN−2s

(∫
B+

r

y1−2sÃ(λnk
·)∇V λnk ·∇V λnkdz − ks,Nλ

2s
nk

∫
B′

r

h̃(λnk
·)| Tr(V λnk )|2 dy

)
,
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and
HV (r) := 1

rN+1−2s

∫
S+

r

y1−2sV 2 dS, DV (r) := 1
rN−2s

∫
B+

r

y1−2s|∇V |2 dz.

By Proposition 4.4.2 in the case h̃ = 0, Ã = IdN+1 and µ = 1, it is clear that HV (r) > 0 for
any r ∈ (0, 1]. Thus the frequency function

NV (r) := DV (r)
HV (r) r ∈ (0, 1]

is well defined. Furthermore by (4.83), (4.104), a change of variables, and a combination of
(4.28) and (4.100), we have

γ = lim
k→+∞

N (λnk
r) = lim

k→+∞

Dk(r)
Hk(r) = NV (r) for any r ∈ (0, 1] (4.110)

and hence N ′
V (r) = 0 for a.e. r ∈ (0, 1]. Arguing as in Proposition 4.4.6 in the case h̃ = 0,

Ã = IdN+1 and µ = 1, we can prove that

N ′
V (r) = 2r

(∫
S+

r
y1−2sV 2 dS

) (∫
S+

r
y1−2s|∇V · ν|2 dS

)
−
(∫

S+
r
y1−2sV (∇V · ν) dS

)2

(∫
S+

r
y1−2sV 2 dS

)2 .

Therefore we conclude that(∫
S+

r

y1−2sV 2 dS

)(∫
S+

r

y1−2s|∇V · ν|2 dS
)

=
(∫

S+
r

y1−2sV (∇V · ν) dS
)2

a.e. r ∈ (0, 1)

where ν = z
|z| , i.e. equality holds in the Cauchy-Schwartz inequality for the vectors V and

∇V · ν in L2(S+
r , y

1−2s) for a.e. r ∈ (0, 1). It follows that in polar coordinates

∂V

∂r
(rθ) = ρ(r)V (rθ) for a.e. r ∈ (0, 1) and for any θ ∈ S+, (4.111)

for some function r 7→ ρ(r). By (4.111) we have∫
S+

r

y1−2sV (∇V · ν) dS = ρ(r)
∫

S+
r

y1−2sV 2 dS. (4.112)

In the case h̃ = 0, A = IdN+1 and µ = 1, (4.66) boils down to H ′
V = 2

rN+1−2s

∫
S+

r
y1−2sV ∂V

∂ν dS,
since the perturbative term involves ∇µ, which now trivially equals 0. From this and (4.112)
we deduce that ρ(r) = H′

V (r)
2HV (r) . At this point, we exploit (4.68) which, in the case h̃ = 0,

A = IdN+1 and µ = 1, becomes H ′
V (r) = 2

rDV (r) and thus implies

ρ(r) = 1
r

NV (r) = γ

r
,

where we used also (4.110). Then an integration over (r, 1) of (4.111) for any fixed θ ∈ S+

yields
V (rθ) = rγV (θ) = rγΨ(θ) for any (r, θ) ∈ (0, 1] × S+, (4.113)
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where Ψ := V |S+ . In view of [60, Lemma 2.1], (4.102) becomes

γ(N − 2s+ γ)r−1−2s+γθ1−2s
N+1 Ψ(θ) + r−1−2s+γ divS+(θ1−2s

N+1 ∇S+Ψ(θ)) = 0

for any (r, θ) ∈ (0, 1]×S+, together with the boundary condition limθN+1→0+ θ1−2s
N+1 ∇SΨ·ν = 0

on S′. Since V λ is odd with respect to yN for any λ ∈ (0, r0] by (4.90) and (4.55), then also
V is odd with respect to yN , so that Ψ ∈ H1

odd(S+, θ1−2s
N+1 ). By (4.113) and (4.103) we have

∥Ψ∥L2(S+,θ1−2s
N+1 ) = 1, so that Ψ ̸≡ 0 is an eigenfunction of problem (4.19) associated to the

eigenvalue γ(γ + N − 2s). From (4.22) it follows that there exists m0 ∈ N \ {0} (which is
odd in the case N = 1) such that γ(γ +N − 2s) = m0(m0 +N − 2s). Therefore, since γ ≥ 0
by Proposition 4.4.8, we conclude that γ = m0 thus proving (4.93). Moreover (4.94) follows
from (4.104) and (4.113).

In Proposition 4.4.10 we have shown that there exists the limit limλ→0+ λ−2γH(λ) and it
is non-negative. Now we prove that limλ→0+ λ−2γH(λ) > 0.

To this end we define, for every λ ∈ (0, r0], m ∈ N \ {0}, k ∈ {1, . . . ,Mm},

φm,k(λ) :=
∫
S+
θ1−2s

N+1W (λθ)Ym,k(θ) dS, (4.114)

i.e. {φm,k(λ)}m,k are the Fourier coefficients of W (λ·) with respect to the orthonormal basis
{Ym,k}m,k introduced in (4.25). For every λ ∈ (0, r0], m ∈ N \ {0}, k ∈ {1, . . . ,Mm}, we also
define

Υm,k(λ) := −
∫

B+
λ

y1−2s(Ã− IdN+1)∇W · 1
|z|

∇SYm,k

(
z

|z|
)
dz

+
∫

S+
λ

y1−2s(Ã− IdN+1)∇W · z

|z|
Ym,k

(
z

|z|
)
dS

+ κN,s

∫
B′

λ

h̃(y) Tr(W ) Tr
(
Ym,k

( y
|y|
))
dy, (4.115)

where IdN+1 is the identity (N + 1) × (N + 1) matrix.

Proposition 4.5.3. Let γ be as in (4.83) and let m0 ∈ N\{0} be such that γ = m0 according
to Proposition 4.5.2. For every k ∈ {1, . . . ,Mm0} and r ∈ (0, r0]

φm0,k(λ) = λm0

(
φm0,k(r)
rm0

+ m0r
−2m0−N+2s

2m0 +N − 2s

∫ r

0
ρm0−1Υm0,k(ρ) dρ

)

+ λm0 m0 +N − 2s
2m0 +N − 2s

∫ r

λ
ρ−m0−N−1+2sΥm0,k(ρ) dρ+O

(
λm0+ 4s2ε

N+2sε

)
(4.116)

as λ → 0+.

Proof. Let k ∈ {1, . . . ,Mm0} and ϕ ∈ D(0, r0). Testing (4.59) with |z|−N−1+2sϕ(|z|)Ym0,k

(
z

|z|
)
,

since Ym0,k solves (4.21), we obtain that φm0,k satisfies

−φ′′
m0,k − N + 1 − 2s

λ
φ′

m0,k + µm0

λ2 φm0,k = ζm0,k (4.117)
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in the sense of distributions in (0, r0), where

D′(0,r0)⟨ζm0,k, ϕ⟩D(0,r0) := κN,s

∫ r0

0

ϕ(λ)
λ2−2s

(∫
S′
h̃(λθ′) Tr(W (λ·))(θ′)Ym0,k(θ′, 0) dS′

)
dλ

−
∫ r0

0

(∫
S+

λ

y1−2s(A− IdN+1)∇W · ∇(|z|−N−1+2sϕ(|z|)Ym0,k

(
z

|z|
)
) dS

)
dλ.

Furthermore, it is easy to verify that Υm0,k ∈ L1(0, r0) and

Υ′
m0,k(λ) = λN+1−2sζm0,k(λ)

in the sense of distributions in (0, r0). Then equation (4.117) can be rewritten as follows

−(λ2m0+N+1−2s(λ−m0φm0,k(λ))′)′ = λm0Υ′
m0,k(λ) (4.118)

in the sense of distributions in (0, r0). Integrating (4.118) over (λ, r) for any r ∈ (0, r0], we
obtain that there exists a constant cm0,k(r) ∈ R which depends only on m0, k, r, such that

(λ−m0φm0,k(λ))′ = −λ−m0−N−1+2sΥm0,k(λ)

−m0λ
−2m0−N−1+2s

(
cm0,k(r) +

∫ r

λ
ρm0−1Υm0,k(ρ) dρ

)
in the sense of distributions in (0, r0). In particular we deduce that φm0,k ∈ W 1,1

loc ((0, r0]) and
a further integration over (λ, r) gives

φm0,k(λ) =λm0

(
φm0,k(r)
rm0

− m0cm0,k(r)
(2m0 +N − 2s)r2m0+N−2s

)
+ λm0 m0 +N − 2s

2m0 +N − 2s

∫ r

λ
ρ−m0−N−1+2sΥm0,k(ρ) dρ

+ m0λ
−m0−N+2s

2m0 +N − 2s

(
cm0,k(r) +

∫ r

λ
ρm0−1Υm0,k(ρ) dρ

)
(4.119)

for every λ, r ∈ (0, r0]. Now we claim that∫ r0

0
ρ−m0−N−1+2s|Υm0,k(ρ)| dρ < +∞. (4.120)

By the Hölder inequality, a change of variables, (4.44), (4.90), Proposition 4.5.1, and (4.85)
we have

λ−m0−N−1+2s

∣∣∣∣∣
∫

B+
λ

y1−2s(Ã− IdN+1)∇W · 1
|z|

∇SYm0,k

(
z

|z|
)
dz

∣∣∣∣∣
≤ λ−m0−N−1+2s

(∫
B+

λ

y1−2s|(Ã− IdN+1)∇W |2 dz
)1

2
(∫

B+
λ

y1−2s

|z|2
∣∣∣∇SYm0,k

(
z

|z|
)∣∣∣2 dz)1

2

≤ λ−m0−1O(λ)
√
H(λ)

(∫
B+

1

y1−2s|∇V λ|2 dz
)1

2
(∫

B+
1

y1−2s

|z|2
∣∣∣∇SYm0,k

(
z

|z|
)∣∣∣2 dz)1

2

≤ constλ−m0
√
H(λ) ≤ const, (4.121)

90



where we used the fact that∫
B+

1

y1−2s

|z|2
∣∣∣∇SYm0,k

(
z

|z|
)∣∣∣2 dz =

∫ 1

0
ρN−1−2s

(∫
S+
θ1−2s

N+1 |∇SYm0,k(θ)|2 dS
)
dρ

= m2
0 +m0(N − 2s)

N − 2s .

Dealing with the second term of (4.115), from an integration by parts, the Hölder inequality,
(4.44) (4.90), Proposition 4.5.1, and (4.85) it follows that, for every r ∈ (0, r0],∫ r

0
λ−m0−N−1+2s

∣∣∣∣∣
∫

S+
λ

y1−2s(Ã− IdN+1)∇W · z

|z|
Ym0,k

(
z

|z|
)
dS

∣∣∣∣∣ dλ
≤ const

∫ r

0
λ−m0−N+2s

(∫
S+

λ

y1−2s|∇W |
∣∣∣Ym0,k

(
z

|z|
)∣∣∣ dS) dλ

= const
(
r−m0−N+2s

∫
B+

r

y1−2s|∇W |
∣∣∣Ym0,k

(
z

|z|
)∣∣∣ dz

+ (m0 +N − 2s)
∫ r

0
λ−m0−N−1+2s

(∫
B+

λ

y1−2s|∇W |
∣∣∣Ym0,k

(
z

|z|
)∣∣∣ dz)dλ)

≤ const
(
r−m0+1

√
H(r) +

∫ r

0
λ−m0

√
H(λ) dλ

)
≤ const r, (4.122)

taking into account that ∫
B+

λ

y1−2s
∣∣∣Ym0,k

(
z

|z|
)∣∣∣2 dz = λN+2−2s

N + 2 − 2s.

By the Hölder inequality the third term in (4.115) can be estimated as

λ−m0−N−1+2s

∣∣∣∣∣
∫

B′
λ

h̃(y) Tr(W ) Tr
(
Ym0,k

( y
|y|
))
dy

∣∣∣∣∣
≤ λ−m0−N−1+2s

(∫
B′

λ

|h̃(y)|| Tr(W )|2 dy
)1

2
(∫

B′
λ

|h̃(y)|
∣∣∣Tr

(
Ym0,k

( y
|y|
))∣∣∣2 dy)1

2

≤ λ−m0−N−1+2sη|h̃|(λ)
(∫

B+
λ

y1−2s|∇W |2 dz + N − 2s
2λ

∫
S+

λ

y1−2sW 2 dS

)1
2

×

×
(∫

B+
λ

y1−2s
∣∣∣∇Ym0,k

(
z

|z|
)∣∣∣2 dz + N − 2s

2λ

∫
S+

λ

y1−2s
∣∣∣Ym0,k

(
z

|z|
)∣∣∣2 dS)1

2

≤ λ−m0−1η|h̃|(λ)
√
H(λ)

(∫
B+

1

y1−2s|∇V λ|2dz + (N − 2s)
∫
S+
θ1−2s

N+1µ(λθ)|V λ|2 dS
)1

2

×

×
(
λ2
∫

B+
1

y1−2s
∣∣∣∇Ym0,k

(
z

|z|
)∣∣∣2 dz + N − 2s

2

∫
S+
θ1−2s

N+1 |Ym0,k(θ)|2 dS
)1

2

≤ constλ−m0−1η|h̃|(λ)
√
H(λ) ≤ constλ−1+ 4s2ε

N+2sε , (4.123)
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in view of (4.28), (4.29), (4.48), (4.85), (4.90), (4.92) and Proposition 4.5.1. Collecting esti-
mates (4.121), (4.122) and (4.123) we deduce that, for every r ∈ (0, r0],∫ r

0
ρ−m0−N−1+2s|Υm0,k(ρ)| dρ ≤ const

(
r +

∫ r

0
ρ−1+ 4s2ε

N+2sε dρ

)
≤ const r

4s2ε
N+2sε , (4.124)

thus proving (4.120). Moreover we have∫ r0

0
ρm0−1|Υm0,k(ρ)| dρ < +∞, (4.125)

as a consequence of (4.120), since in a neighbourhood of 0, ρm0−1 ≤ ρ−m0−N−1+2s.
Now we claim that, for every r ∈ (0, r0],

cm0,k(r) +
∫ r

0
ρm0−1Υm0,k(ρ) dρ = 0 (4.126)

To prove (4.126) we argue by contradiction. If there exists r ∈ (0, r0] such that (4.126) does
not hold true, then by (4.119), (4.120) and (4.125)

φm0,k(λ) ∼ m0λ
−m0−N+2s

2m0 +N − 2s

(
cm0,k(r) +

∫ r

0
ρm0−1Υm0,k(ρ) dρ

)
as λ → 0+.

From this, it follows that ∫ r0

0
λN−1−2s|φm0,k(λ)|2dλ = +∞, (4.127)

since N − 2s+ 2m0 > 0. On the other hand, from (4.114), the Parseval identity and (3.6) we
deduce the following estimate∫ r0

0
λN−1−2s|φm0,k(λ)|2 dλ ≤

∫ r0

0
λN−1−2s

(∫
S+
θ1−2s

N+1 |W (λθ)|2 dS
)
dλ

=
∫ r0

0
λ−2

(∫
S+

λ

y1−2s|W |2 dS
)
dλ =

∫
B+

r0

y1−2s |W (z)|2

|z|2
dz < +∞,

which contradicts (4.127). Hence (4.126) is proved. From (4.126) and (4.124) it follows that,
for every r ∈ (0, r0],

λ−m0−N+2s

∣∣∣∣cm0,k(r) +
∫ r

λ
ρm0−1Υm0,k(ρ) dρ

∣∣∣∣ = λ−m0−N+2s

∣∣∣∣∣
∫ λ

0
ρm0−1Υm0,k(ρ) dρ

∣∣∣∣∣
≤ λ−m0−N+2s

(
λ2m0+N−2s

∫ λ

0
ρ−m0−N−1+2s|Υm0,k(ρ)| dρ

)
≤ constλm0+ 4s2ε

N+2sε . (4.128)

We finally deduce (4.116) combining (4.119), (4.126) and (4.128).

Proposition 4.5.4. Let γ be as in (4.83). Then

lim
λ→0+

λ−2γH(λ) > 0. (4.129)
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Proof. By (4.49), the Parseval identity and (4.114) we have

H(λ) =
∫
S+
θ1−2s

N+1µ(λθ)|W (λθ)|2 dS = (1 +O(λ))
∞∑

m=1

Mm∑
k=1

|φm,k(λ)|2. (4.130)

Let m0 ∈ N \ {0} be such that γ = m0 according to Proposition 4.5.2. We argue by contra-
diction and assume that 0 = limλ→0+ λ−2γH(λ) = limλ→0+ λ−2m0H(λ). In view of (4.130)
this would imply that

lim
λ→0+

λ−m0φm0,k(λ) = 0 for every k ∈ {1, . . . ,Mm0}.

Therefore, from (4.116) it follows that, for all k ∈ {1, . . . ,Mm0} and r ∈ (0, r0],

φm0,k(r)
rm0

+ m0r
−2m0−N+2s

2m0 +N − 2s

∫ r

0
ρm0−1Υm0,k(ρ) dρ

+ m0 +N − 2s
2m0 +N − 2s

∫ r

0
ρ−m0−N−1+2sΥm0,k(ρ) dρ = 0,

so that, substituting into (4.116), we obtain that

φm0,k(λ) = − m0 +N − 2s
2m0 +N − 2sλ

m0

∫ λ

0
ρ−m0−N−1+2sΥm0,k(ρ) dρ+O

(
λm0+ 4s2ε

N+2sε

)
as λ → 0+. Hence, from (4.124) we infer that

φm0,k(λ) = O

(
λm0+ 4s2ε

N+2sε

)
as λ → 0+ for all k ∈ {1, . . . ,Mm0}. (4.131)

Moreover, estimate (4.87) with σ = 2s2ε
N+2sε implies that

1√
H(λ)

= O

(
λ−m0− 2s2ε

N+2sε

)
as λ → 0+. (4.132)

Since
φm0,k(λ) =

√
H(λ)

∫
S+
θ1−2s

N+1V
λ(θ)Ym0,k(θ) dS for all k ∈ {1, . . . ,Mm0}

by (4.114) and (4.90), from (4.131) and (4.132) we deduce that∫
S+
θ1−2s

N+1V
λ(θ)Ψ(θ) dS = O

(
λ

2s2ε
N+2sε

)
as λ → 0+, (4.133)

for every Ψ ∈ Span{Ym0,k : k ∈ {1, . . .Mm0}}. By (4.24), (4.25), (3.4) and Proposition 4.5.2,
for any sequence λn → 0+, there exist a subsequence λnh

→ 0+ and Ψ ∈ Span{Ym0,k : k ∈
{1, . . .Mm0}} such that ∥Ψ∥L2(S+,θ1−2s

N+1 ) = 1 and

lim
h→+∞

∫
S+
θ1−2s

N+1V
λnh (θ)Ψ(θ) dS =

∫
S+
θ1−2s

N+1 |Ψ|2 dS = 1,

thus contradicting (4.133).
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Theorem 4.5.5. Let W be a non trivial weak solution to (4.58). Let γ be as in (4.83) and
m0 ∈ N \ {0} be such that γ = m0, according to Proposition 4.5.2. Let {Ym0,k}k∈{1,...,Mm0 } be
as in (4.25), with Vm0 and Mm0 defined as in (4.23) and (4.24) respectively. Then

λ−m0W (λz) → |z|m0

Mm0∑
k=1

βkYm0,k

(
z

|z|

)
as λ → 0+ strongly in H1(B+

1 , y
1−2s),

where (β1, . . . , βMm0
) ̸= (0, . . . , 0) and, for every k ∈ {1, . . . ,Mm0},

βk = φm0,k(r)
rm0

+ m0r
−2m0−N+2s

(2m0 +N − 2s)

∫ r

0
ρm0−1Υm0,k(ρ) dρ

+ m0 +N − 2s
2m0 +N − 2s

∫ r

0
ρ−m0−N−1+2sΥm0,k(ρ) dρ, (4.134)

for all r ∈ (0, r0], where φm0,k is defined in (4.114) and Υm0,k in (4.115) .

Proof. From Proposition 4.5.2, (4.25), and (4.129) it follows that, for any sequence {λn} such
that λn → 0+ as n → ∞, there exist a subsequence {λnh

} and real numbers β1, . . . , βMm0
such that (β1, . . . , βMm0

) ̸= (0, . . . , 0) and

λ−m0
nh

W (λnh
z) → |z|m0

Mm0∑
k=1

βkYm0,k

(
z

|z|

)
as h → +∞ strongly in H1(B+

1 , y
1−2s). (4.135)

We claim that the numbers β1, . . . βMm0
depend neither on the sequence {λn} nor on its

subsequence {λnh
}. Letting φm0,k be as (4.114), for every k ∈ {1, . . . ,Mm0}

lim
h→+∞

λ−m0
nh

φm0,k(λnh
) = lim

h→+∞

∫
S+
θ1−2s

N+1λ
−m0
nh

W (λnh
θ)Ym0,k(θ) dS = βk, (4.136)

thanks to (4.135) and the compactness of the trace operator in (3.4). Combining (4.136) and
(4.116) we obtain that, for every r ∈ (0, r0], βk = limh→+∞ λ−m0

nh
φm0,k(λnh

) is equal to the
right hand side in (4.134), thus proving the claim. By Urysohn’s subsequence principle we
conclude that the convergence in (4.135) holds as λ → 0+, hence the proof is complete.

4.6 Proofs of the main results
The proof of Theorem 4.1.3 is obtained as a consequence of the following result.

Theorem 4.6.1. Let N > 2s and Ω ⊂ RN be a bounded Lipschitz domain such that 0 ∈ ∂Ω
and (4.10)–(4.12) are satisfied with x0 = 0 for some function g and R > 0. Let U be a non
trivial solution to (4.17) in the sense of (4.18), with h satisfying (4.8), and let

Û(z) =
{
U(z), if z ∈ CΩ ∩ F (B+

r0),
0, if z ∈ F (B+

r0) \ CΩ,
(4.137)

with F and r0 being as in Proposition 4.3.1. Then there exist m0 ∈ N \ {0} (which is odd in
the case N = 1) such that

λ−m0Û(λz) → |z|m0

Mm0∑
k=1

βkŶm0,k

(
z

|z|

)
as λ → 0+ strongly in H1(B+

1 , y
1−2s), (4.138)
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where Mm0 is as in (4.24),

Ŷm0,k(θ′, θN , θN+1) =
{
Ym0,k(θ′, θN , θN+1), if θN < 0,
0, if θN ≥ 0,

(4.139)

with {Ym0,k}k∈{1,...,Mm0 } being as in (4.25), and the coefficients βk satisfy (4.134).

Proof. If U is a non trivial solution of (4.17), then the function W defined in (4.34) and (4.55)
belongs to H1(B+

r0 , y
1−2s) and is a non trivial weak solution to (4.58). Letting

Ŵ (z) =
{
W (z), if z ∈ Qr0 ,

0, if z ∈ B+
r0 \ Qr0 ,

where Qr0 is defined in (4.33), by Remark 4.3.4 we have Ŵ ∈ H1(B+
r0 , y

1−2s). Moreover
Theorem 4.5.5 implies that

λ−m0Ŵ (λz) → Φ̂(z) strongly in H1(B+
1 , y

1−2s) as λ → 0+,

where

Φ̂(z) = |z|m0

Mm0∑
k=1

βkŶm0,k

(
z

|z|

)
with βk as in (4.134). Hence, by homogeneity,

λ−m0Ŵ (λz) → Φ̂(z) strongly in H1(B+
r , y

1−2s) as λ → 0+ for all r > 1. (4.140)

We note that

λ−m0Û(λz) = λ−m0Ŵ (λGλ(z)) and ∇
(
Û(λ·)
λm0

)
= ∇

(
Ŵ (λ·)
λm0

)
(Gλ(z))JGλ

(z) (4.141)

where
Gλ(z) := 1

λ
F−1(λz) for any λ ∈ (0, 1] and z ∈ 1

λ
F (Br+

0
).

From Proposition 4.3.1 we deduce that

Gλ(z) = z +O(λ) and JGλ
(z) = IdN+1 +O(λ) as λ → 0+

uniformly respect to z ∈ B+
1 . It follows that, if fλ → f in L2(B+

r , y
1−2s) as λ → 0+ for some

r > 1, then fλ ◦ Gλ → f in L2(B+
1 , y

1−2s) as λ → 0+. Then we conclude in view of (4.140)
and (4.141).

Proof of Theorem 4.1.3 . It follows directly from Theorem 4.6.1 up to a translation.

Passing to traces in (4.138) we obtain the following blow-up result for solutions to (4.1).

Theorem 4.6.2. Let N > 2s and Ω ⊂ RN be a bounded Lipschitz domain such that 0 ∈ ∂Ω
and (4.10)–(4.12) are satisfied with x0 = 0 for some function g and R > 0. Let u ∈ Hs(Ω) be
a non trivial solution of (4.1) in the sense of (4.9), with h satisfying (4.8), and let û(x) = ι(u)
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with ι defined in (4.4). Then there exists m0 ∈ N \ {0} (which is odd in the case N = 1) such
that

λ−m0 û(λx) → |x|m0

Mm0∑
k=1

βkŶm0,k

(
x

|x|
, 0
)

as λ → 0+ strongly in Hs(B′
1),

where Mm0 is as in (4.24), {Ŷm0,k}k∈{1,...,Mm0 } are defined in (4.139) and the coefficients βk

satisfy (4.134).

Proof. As observed in [37], if u ∈ Hs(Ω) is a non trivial solution of (4.1), then its extension
H(u) = U is non trivial solution to (4.17). Hence the corresponding function Û defined in
(4.137) satisfies (4.138) by Theorem 4.6.1. Since û = Tr(Û), the conclusion follows from
Proposition 4.2.2.

Proof of Theorem 4.1.2. It follows directly from Theorem 4.6.2 up to a translation.

4.7 Neumann eigenvalues on the half-sphere under a symme-
try condition

In order to determine the eigenvalues of (4.19), we first need the following preliminary lemma.

Lemma 4.7.1. Let m,N ∈ N\{0} and let u ∈ Cm(RN ) be a positively homogeneous function
of degree m, i.e.

u(λx) = λmu(x) for every λ > 0 and x ∈ RN . (4.142)

Then u is a homogeneous polynomial of degree m.

Proof. Let α = (α1, . . . , αN ) ∈ NN be a multindex, |α| :=
∑N

i=1 αi, and xα = xα1
1 . . . xαN

N for
any x = (x1, . . . , xN ) ∈ RN . By Taylor’s Theorem with Lagrange remainder centered at 0,
for any x ∈ RN there exists t ∈ [0, 1] such that

u(x) =
∑

|α|<m

cα
∂|α|u

∂xα
(0)xα +

∑
|α|=m

cα
∂|α|u

∂xα
(tx)xα,

where cα > 0 are positive constants depending on α and ∂|α|u
∂xα stands for ∂|α|u

∂x
α1
1 ···∂x

αN
N

. By

(4.142), one can easily prove that ∂|α|u
∂xα is a positively homogeneous function of degree m−|α|

for all α with |α| ≤ m. Thus, combining this fact with the continuity of ∂|α|u
∂xα , it is clear that

∂|α|u
∂xα (0) = 0 for every α ∈ NN with |α| < m. On the other hand, for every α ∈ NN with

|α| = m, ∂|α|u
∂xα is constant and exactly equal to ∂|α|u

∂xα (0), being a homogeneous function of
degree 0. It follows that

u(x) =
∑

|α|=m

cα
∂|α|u

∂xα
(0)xα for every x ∈ RN ,

hence proving the claim.

Proposition 4.7.2. All the eigenvalues of problem (4.19) are characterized by formula (4.22).
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Proof. We start by proving that if µ is an eigenvalue of (4.19), then µ = m2 +m(N − 2s) for
some m ∈ N \ {0}. If µ is an eigenvalue, then there exists a non trivial solution Y of (4.19).
A direct computation shows that Y is a weak solution to (4.19) if and only if the function

U(z) := |z|γY
(
z

|z|

)
, z ∈ RN+1

+ ,

with

γ := −N − 2s
2 +

√(
N − 2s

2

)2
+ µ, (4.143)

belongs to H1
loc(R

N+1
+ , y1−2s), is odd with respect to yN and weakly solves{

div(y1−2s∇U) = 0, in RN+1
+ ,

limy→0+ y1−2s ∂U
∂ν = 0, on RN .

(4.144)

Hence, if µ is an eigenvalue of (4.19), there exists a solution U of (4.144) which is odd
with respect to yN and positively homogeneous of degree γ. The regularity result in [120,
Theorem 1.1] ensures that U ∈ C∞(B+

1 ). Then there exists m ∈ N \ {0} such that γ = m
and so µ = m2 + m(N − 2s) thanks to (4.143). We notice that the case m = 0 is excluded
since in that case µ = 0 and 0 is not an eigenvalue. Indeed, if by contradiction 0 is an
eigenvalue, letting Y be an eigenfunction of (4.19) with associated eigenvalue 0 and choosing
in (4.21) Ψ = Y , we would have Y constant and Y ̸≡ 0, hence Y /∈ H1

odd(S+, θ1−2s
N+1 ) which is

a contradiction (see (4.20)).
Viceversa, in order to prove that the numbers given in (4.22) are eigenvalues of (4.19), we

need to show that, for any fixed m ∈ N \ {0}, there actually exist an eigenfunction associated
to m2 +m(N − 2s) if N > 1 and an eigenfunction associated to (2m− 1)2 + (2m− 1)(N − 2s)
if N = 1. Equivalently, for any fixed m ∈ N \ {0} we have to find a non trivial solution to
(4.144) which is odd with respect to xN and positively homogeneous with degree m if N > 1
and 2m − 1 if N = 1. To this end, we observe that equation div(y1−2s∇U) = 0 can be
rewritten as

∆U + 1 − 2s
y

Uy = 0. (4.145)

We first consider the case N = 1. If n = 2m− 1 with m ∈ N \ {0}, we consider the following
homogeneous polynomial of degree 2m− 1, odd with respect to x1,

U1,m(x1, y) :=
m−1∑
k=0

akx
2k+1
1 y2m−2k−2, (4.146)

with a0, . . . , am−1 ∈ R. A direct computation shows that U1,m is a solution of (4.144), and
equivalently of (4.145), if and only if

ak = −2[(m− k)2 − s(m− k)]
k(2k + 1) ak−1 for all k ∈ {1, . . . ,m− 1}.

Thus, for example choosing a0 := 1, we have constructed a non trivial solution to (4.144)
which is odd with respect to y1 and positively homogeneous of degree 2m− 1.

To complete the proof of (4.22) in the case N = 1, it remains to show that, if n = 2m
with m ∈ N \ {0}, then n2 + n(N − 2s) is not an eigenvalue of (4.19). To this aim, we argue
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by contradiction and assume that (2m)2 + 2m(N − 2s) is an eigenvalue of (4.19) associated
to an eigenfunction Ψ. Then the function defined as

U(z) = |z|γΨ
(
z

|z|

)
, z = (x1, y) ∈ R2

+,

with

γ = −N − 2s
2 +

√(
N − 2s

2

)2
+ (2m)2 + 2m(N − 2s) = 2m

is a non trivial solution to (4.144), odd with respect to x1. Hence, if we consider the even
reflection of U with respect to y, namely the function Ũ(x1, y) := U(x1, |y|), Ũ is a solution
of div(|y|1−2s∇Ũ) = 0 in R2. Then, by [120, Theorem 1.1] we deduce that Ũ ∈ C∞(R2).
Moreover, Ũ is positively homogeneous of degree γ = 2m, therefore from Lemma 4.7.1 it
follows that Ũ is a homogeneous polynomial of degree 2m, namely

Ũ(x1, y) =
2m∑
k=0

akx
2m−k
1 yk

where ak = 0 if k is odd since Ũ is even with respect to y. In this way Ũ turns out to be
even also with respect to x1 and this contradicts the fact that U is non trivial and odd with
respect to x1.

If N = 2 and m ∈ N \ {0} is odd, then we consider U2(x1, x2, y) := U1,n(x2, y), where
U1,n is defined in (4.146) and n ∈ N \ {0} is such that m = 2n − 1. Such U2 is a positively
homogeneous solution of (4.144) of degree m, odd with respect to x2. If m ∈ N \ {0} is even,
i.e. m = 2n with n ∈ N \ {0}, then we define

U3(x1, x2, y) :=
n−1∑
k=0

akx
2k+1
1 x2n−2k−1

2 ,

with a0, . . . , an−1 ∈ R. A direct computation shows that U3 is a solution of (4.144), and
equivalently of (4.145), if and only if

ak+1 = −[2(n− k)2 − 3n+ 3k + 1]
(2k2 + 5k + 3) ak for all k ∈ {0, . . . , n− 2}.

Then, choosing for example again a0 = 1, we obtain that U3 is a solution of (4.144) which is
positively homogeneous of degree m and odd with respect to y2, as desired.

IfN > 2, for anym ∈ N\{0} there exists a harmonic homogeneous polynomial P ̸≡ 0 in the
variables y1, . . . , xN−1, of degree m− 1. Then U4(x1, . . . , xN−1, xN , t) := P (x1, . . . , xN−1)xN

is a non trivial solution to (4.144) which is odd with respect to xN and positively homogeneous
of degree m.
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Chapter 5

Unique continuation for the
fractional power of a
Schrödinger-type operator

5.1 Statement of the main results
In this Chapter we establish a strong unique continuation principle and classify the asymptotic
profiles in the singular point 0 for solutions of the linear equation

Ls
α,ku = gu in Ω (5.1)

where Ω ⊂ RN with N ≥ 3 is a connected bounded Lipschitz domain such that 0 ∈ Ω and

Lα,ku := −∆u− α

|x|2k
u

with

|x|2k =
k∑

i=1
x2

i and α ∈
(

−∞,

(
k − 2

2

)2)
(5.2)

for any k ∈ {3, . . . , N}. The fractional powers Ls
α,k of the operator Lα,k are rigorously defined

in (5.9). The potential g satisfies{
g ∈ W 1,∞

loc (Ω \ {0}),
|g(x)| + |x · ∇g(x)| ≤ Cg|x|−2s+ε, for a.e. x ∈ Ω,

(5.3)

for some positive constant Cg > 0 and ε ∈ (0, 1).
Since we deal with singular potentials of the form α|x|−2

k , Hardy-type inequalities with
optimal constants are fundamental to study the positivity of Lα,k on H1

0 (Ω). In the case
k = N it is well known that∫

RN

ϕ2

|x|2
dx ≤

( 2
N − 2

)2 ∫
RN

|∇ϕ|2 dx for any ϕ ∈ C∞
c (RN ),
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and that
( 2
N − 2

)2
is the optimal constant. A similar result also holds for cylindrical poten-

tial, more precisely for any k ∈ {3, . . . , N}∫
RN

ϕ2

|x|2k
dx ≤

( 2
k − 2

)2 ∫
RN

|∇ϕ2| dx for any ϕ ∈ C∞
c (RN ), (5.4)

see [104, Subsection 2.1.6, Corollary 3] or [20]. Furthermore
(

2
k−2

)2
is the optimal constant

as conjectured in [20] and proved in [116].
Let us consider the eigenvalue problem{

Lα,ku = µu, in Ω,
u = 0, on ∂Ω.

(5.5)

We say that µ is an eigenvalue of (5.5) if there exists Y ∈ H1
0 (Ω) \ {0} such that∫

Ω
∇Y · ∇v dx−

∫
Ω

α

|x|2k
Y v dx = µ

∫
Ω
Y v dx, for any v ∈ H1

0 (Ω). (5.6)

Thanks to (5.2) and (5.4), for any k ∈ {3, · · · , N} the energy functional

Jα,k(u) :=
∫

Ω
|∇u|2 dx−

∫
Ω

α

|x|2k
u2 dx

is coercive on H1
0 (Ω) and so by the Spectral Theorem the set of the eigenvalues of (5.5)

is a non-decreasing, positive, diverging sequence {µα,k,n}n∈N\{0}(we repeat each eigenvalue
according to its multiplicity). Furthermore there exists an orthonormal basis {Yα,k,n}n∈N\{0}
of L2(Ω) made of corresponding eigenfunctions. Since the first eigenfunction does not change
sign, it is not restrictive to suppose that Yα,k,1 is positive.

For any Hilbert space X let (v1, v2)X be the scalar product on X. Furthermore let

vn := (v, Yα,k,n)L2(Ω) for any v ∈ L2(Ω). (5.7)

Remark 5.1.1. In view of (5.4), ∥v∥α,k := (Jα,k(v))
1
2 is a norm on H1

0 (Ω) equivalent to the

usual norm ∥v∥H1
0 (Ω) :=

(∫
Ω |∇v|2 dx

) 1
2 . The scalar product associated to ∥·∥α,k is given by

(v, w)α,k :=
∫

Ω
∇v · ∇w − α

|x|2k
vw dx.

By (5.6), {Yα,k,n/
√
µα,k,n}n∈N\{0} is an orthonormal basis of H1

0 (Ω) with respect to the norm
∥·∥α,k and for any v, w ∈ H1

0 (Ω)

(v, w)α,k =
∞∑

n=1
µα,k,nvnwn,

where vn and wn are as in (5.7).
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Let us consider the functional space

Hs
α,k(Ω) :=

{
v ∈ L2(Ω) :

∞∑
n=1

µs
α,k,nv

2
n < +∞

}

which is a Hilbert space with respect to the scalar product

(v, w)Hs
α,k

(Ω) :=
∞∑

n=1
µs

α,k,nvnwn, for any v, w ∈ Hs
α,k(Ω). (5.8)

We can precode as in Chapter 4 to define the fractional powers of the operator Ls
α,k. Indeed

for any j ∈ N \ {0}, and v ∈ L2(Ω) it is clear that
∑j

n=1 µ
s
α,k,nvnYα,k,n ∈ L2(Ω) and that it

can be identified with the element of the dual space (Hs
α,k(Ω))∗ acting on u ∈ Hs

α,k(Ω) as

(Hs
α,k

(Ω))∗

〈 j∑
n=1

µs
α,k,nvnYα,k,n, u

〉
Hs

α,k
(Ω)

:=

 j∑
n=1

µs
α,k,nvnYα,k,n, u


L2(Ω)

=
j∑

n=1
µs

α,k,nvnun.

It is easy to see that, if v ∈ Hs
α,k(Ω), then the series

∑∞
n=1 µ

s
α,k,nvnYα,k,n converges in the dual

space (Hs
α,k(Ω))∗ to some F ∈ (Hs

α,k(Ω))∗ such that

(Hs
α,k

(Ω))∗⟨F, Yα,k,n⟩Hs
α,k

(Ω) = µs
α,k,nvn for any n ∈ N \ {0}.

It follows that, for every v ∈ Hs
α,k(Ω), we can define the fractional s-power of the operator

Lα,k as

Ls
α,kv :=

∞∑
n=1

µs
α,k,nvnYα,k,n ∈ (Hs

α,k(Ω))∗. (5.9)

More precisely, the operator Ls
α,k is the Rietz isomorphism between Hs

α,k(Ω) endowed with
the scalar product (5.8) and its dual space (Hs

α,k(Ω))∗, that is

(Hs
α,k

(Ω))∗

〈
Ls

α,kv1, v2
〉
Hs

α,k
(Ω)

= (v1, v2)Hs
α,k

(Ω) for all v1, v2 ∈ Hs
α,k(Ω).

We would like to characterize the space Hs
α,k(Ω) more explicitly. To this end, let us define

Hs(Ω) :=
{
Hs

0(Ω), if s ∈ (0, 1) \ {1
2},

H
1/2
00 (Ω), if s = 1

2 .

as in Section 4.1 of Chapter 4. In Section 5.7 we will prove the following Proposition by
means of Interpolation Theory.

Proposition 5.1.2. For any k ∈ {3, . . . , N}, s ∈ (0, 1) and α as in (5.2)

Hs
α,k(Ω) = (L2(Ω), H1

0 (Ω))s,2 = Hs(Ω),

with equivalent norms.
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Let for any measurable function v : Ω → R,

ṽ(x) :=
{
v(x), if x ∈ Ω,
0, if x ∈ RN \ Ω.

Then from [31, Proposition B.1] in the case s ̸= 1
2 and from the proof of [31, Proposition B.1]

and (4.3) if s = 1
2 we deduce the following result.

Proposition 5.1.3. There exists a constant CN,s,Ω such that

∥ṽ∥Hs(Rn) ≤ CN,s,Ω ∥v∥Hs(Ω) (5.10)

for any v ∈ Hs(Ω).

Proposition 5.1.4. There exists a constant KN,s,Ω such that for any v ∈ Hs(Ω)∫
Ω

v2(x)
|x|2s

dx ≤ KN,s,Ω ∥v∥2
Hs(Ω) . (5.11)

Proof. The following Hardy-type inequality due to Herbst [86]

22s
Γ2
(

N+2s
4

)
Γ2
(

N−2s
4

) ∫
RN

v2(x)
|x|2s

dx ≤
∫
RN

|ξ|2s|û(ξ)|2dξ,

where û is the Fourier transform of u, holds for any v ∈ Hs(RN ). Then (5.11) follows from
(5.10).

By Proposition 5.1.2, we can define a weak solution to (5.1) as a function u ∈ Hs(Ω) such
that

(Hs
α,k

(Ω))∗

〈
Ls

α,ku, ϕ
〉
Hs

α,k
(Ω)

=
∫

Ω
guϕ dx, for any ϕ ∈ C∞

c (Ω). (5.12)

Thanks to (5.3), (5.11) and the Hölder inequality, the right hand side of (5.12) is well defined,
that is it belongs to (Hs(Ω))∗ as a linear functional of ϕ.

Given the local nature of the Almgren monotonicity formula we need to localize the
problem by means of an extension procedure in the spirt of [37] or [35], see also [125, Section
3.1]. Let

C := Ω × (0,+∞), ∂CL := ∂Ω × (0,+∞).

Proposition 5.1.5. For any ϕ ∈ C∞
c (RN × [0,+∞)) and any k ∈ {3, . . . , N}∫

RN+1
+

y1−2s ϕ
2

|x|2k
dz ≤

( 2
k − 2

)2 ∫
RN+1

+

y1−2s|∇xϕ|2 dz, (5.13)

where ∇x is the gradient respect to the first N variables.

Proof. Let ϕ ∈ C∞
c (Ω×[0,+∞)) and k ∈ {3, . . . , N}. Then ϕ(·, y) ∈ C∞

c (Ω) for any y ∈ [0,∞)
and so multiplying by y1−2s and integrating over (0,∞) we deduce (5.13) from (5.4).
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Let
H1

0,L(C, y1−2s) :=
{
V ∈ H1(C, y1−2s) : V = 0 on ∂CL

}
.

The condition V = 0 on ∂CL is meant in a classical trace sense. Indeed the weight y1−2s is
smooth, bounded and strictly positive on Ω × [y1, y2] for any 0 < y1 < y2 < +∞, and so we
can use classical trace theory for the space H1(Ω × (y1, y2)) for any 0 < y1 < y2 < +∞.

From [37, Proposition 2.1] and [34, Proposition 2.1, Lemma 2.6] we deduce the following
result.
Proposition 5.1.6. There exists a linear and continuous trace operator

Tr : H1
0,L(C, y1−2s) → Hs(Ω)

which is also surjective.
See Section 5.2 for a proof of the following next extension theorem,.

Theorem 5.1.7. Let v ∈ Hs(Ω), k ∈ {3, . . . , N} and α as in (5.2). Then there exists a
unique function V ∈ H1

0,L(C, y1−2s) such that V weakly solves the problem
− div(y1−2s∇V ) = y1−2s α

|x|2
k
V, in C,

Tr(V ) = v, on Ω,
− limy→0+ y1−2s ∂V

∂y = cN,sL
s
k,αv, on Ω,

(5.14)

where cN,s > 0 is a constant depending only on N and s, in the sense that∫
C
y1−2s∇V · ∇ϕdz −

∫
C
y1−2s α

|x|2k
V ϕ dz = cN,s (Hs

α,k
(Ω))∗

〈
Ls

α,kv, ϕ(·, 0)
〉
Hs

α,k
(Ω)

(5.15)

for any ϕ ∈ C∞
c (Ω × [0,+∞)). Furthermore∫

C
y1−2s|∇V (x, y)|2 dz −

∫
C
y1−2s α

|x|2k
V 2 dz = cN,s ∥v∥2

Hs
α,k

(Ω) (5.16)

and V is the only solution to the minimization problem

inf
{∫

C
y1−2s

(
|∇W |2 − α

|x|2k
w2
)
dz : W ∈ H1

0,L(C, y1−2s) and Tr(W ) = v

}
. (5.17)

From Theorem 5.1.7 we deduce the following corollary.
Corollary 5.1.8. Let u ∈ Hs(Ω) be a solution of (5.12). Then there exists a unique U ∈
H1

0,L(C, y1−2s) such that
− div(y1−2s∇U) = y1−2s α

|x|2
k
U, in C,

Tr(U) = u, on Ω,
− limy→0+ y1−2s ∂U

∂y = cN,sgu, on Ω,
(5.18)

where cN,s > 0 is the constant depending only on N and s defined in Theorem 5.1.7, in the
sense that ∫

C
y1−2s∇U · ∇ϕdz −

∫
C
y1−2s α

|x|2k
Uϕdz = cN,s

∫
Ω
guϕ(·, 0) dx (5.19)

for any ϕ ∈ C∞
c (Ω × [0,+∞)). Furthermore∫

C
y1−2s|∇U(x, y)|2 dz −

∫
C
y1−2s α

|x|2k
U2 dz = cN,s ∥u∥2

Hs
α,k

(Ω) = cN,s

∫
Ω
gu2 dx.
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Let θ = z
|z| for any z ∈ RN+1 and θ′ = (θ1, . . . , θN ).

The asymptotic profile of a solution U of (5.19) in 0 will turn out to be related to the
following eigenvalue problem

− divS(θ1−2s
N+1 ∇SZ) − θ1−2s

N+1
α

|θ|2
k
Z = γθ1−2s

N+1Z, in S+,

− lim
θN+1→0+

θ1−2s
N+1 ∇SZ · ν = 0, on S′,

(5.20)

where ν is the outer normal vector to S+ on S′, that is ν = −(0, . . . , 0, 1) and

S := {θ ∈ RN+1 : |θ|2 = 1},
S+ := {θ = (θ′, θN+1) ∈ S : θN+1 > 0},
S′ := {θ = (θ′, θN+1) ∈ S : θN+1 = 0}.

We refer to Subsection 5.2.1 for a variational formulation of (5.20). By classical spectral the-
ory, see Subsection 5.2.1 for further details, the eigenvalues of (5.20) are a non-decreasing and
diverging sequence {γα,k,n}n∈N\{0} (we repeat each eigenvalue according to its multiplicity).
We have the following estimate on γα,k,1:

γα,k,1 > −
(
N − 2s

2

)2

for any k ∈ {3, . . . , N} and α as in (5.2), see Proposition 5.2.3. We can actually compute
γα,k,1 in terms of the first eigenvalue ηα,k,1 of the problem

−∆S′Ψ − α

|θ′|2k
Ψ = ηΨ in S′ (5.21)

as

γα,k,1 = 2(1 − s)

√(N − 2
2

)2
+ ηα,k,1 − N − 2

2

+ ηα,k,1, (5.22)

see Section 5.6. In particular, if k = N then ηα,k,1 = −α and so

γα,N,1 = 2(1 − s)

√(N − 2
2

)2
− α− N − 2

2

− α. (5.23)

If k = N , we are able to obtain an explicit expression of γα,N,1 for any α ∈
(
−∞, N−2

2

)
. For

the restricted fractional Laplacian with a Hardy-type potential it is also possible to obtain a
formula for the first eigenvalue of the corresponding problem on a hemisphere although with
a more implicit expression, see [60, Proposition 2.3].

Theorem 5.1.9. Let U be a non-trivial solution of (5.19) and suppose that g satisfies (5.3).
Then there exist an eigenvalue γα,k,n of (5.20) and a correspondent eigenfunction Z such that

λ
N−2s

2 −
√

( N−2s
2 )2+γα,k,n

U(λz) → |z|−
N−2s

2 +
√

( N−2s
2 )2+γα,k,n

Z(z/|z|) as λ → 0+

strongly in H1(B+
1 , y

1−2s).
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From Section 3.1 in Chapter 3 and the previous theorem we obtain the following.

Theorem 5.1.10. Let u be a non-trivial solution solution of (5.12) and suppose that g satisfies
(5.3). Then there exist an eigenvalue γα,k,n of (5.20) and a correspondent eigenfunction Z
such that

λ
N−2s

2 −
√

( N−2s
2 )2+γα,k,n

u(λx) → |x|−
N−2s

2 +
√

( N−2s
2 )2+γα,k,n Tr(Z(·/| · |))(x) as λ → 0+

strongly in Hs(B′
1).

We will also prove a more precise and complete version of Theorem 5.1.9 and Theorem
5.1.10 in Section 5.5, computing the coordinates of the eigenfunction Z respect to a basis of the
eigenspace corresponding to γα,k,n. Furthermore we can deduce the following strong unique
continuation properties as corollaries of Theorem 5.1.9 and Theorem 5.1.10 respectively.

Corollary 5.1.11. Let U be a solution of (5.19) and suppose that g satisfies (5.3). If

U(z) = o(|z|n) = o(|(x, y)|n) as x → 0, y → 0+ for any n ∈ N (5.24)

then U ≡ 0 on Ω × (0,∞).

Corollary 5.1.12. Let u be a solution of (5.12) and suppose that g satisfies (5.3). If

u(x) = o(|x|n) as x → 0, for any n ∈ N

then u ≡ 0 on Ω.

Remark 5.1.13. We have considered equation (5.1) with assumption (5.3) on the potential
g for the sake of simplicity. With simple modifications to our arguments it is also possible to
obtain the same results for a potential g ∈ W

N
2s

+ε(Ω) for some ε ∈ (0, 1), see [75, Proposition
2.3] for the corresponding Pohozaev identity. Furthermore we can obtain analogous results
for the more general equation

Ls
k,αu = λ

|x|2s
u+ gu,

with λ ∈
(

−∞, 22s Γ2( N+2s
4 )

Γ2( N−2s
4 )

)
with the same approach, where Γ is the usual Γ-function.

This Chapter is organized as follows. In Section 5.2 we prove the extension Theorem 5.1.7,
study an eigenvalue problem on a hemisphere, which will turn out to be correlated to the
asymptotic profiles of weak solutions of (5.1), and discuss some useful inequalities. In Section
5.3 we prove a Pohozaev type identity. In Section 5.4 we develop a monotonicity formula for
the extend problem while in Section 5.5 we carry out the blow-up argument and prove our
main results. Finally in Section 5.6 we compute the first eigenvalue of the problem studied in
5.2 while in Section 5.7 we provide some further details on the functional setting for equation
(5.1) which will be introduced in Section 5.1.
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5.2 Preliminaries
We start this section by proving Theorem 5.1.7.

Proof of Theorem 5.1.7. We follow the proof of [37, Proposition 2.1]. Let v ∈ Hs(Ω) and
consider

V (x, y) :=
∞∑

n=1
vnYα,k,n(x)hn(y), where vn =

∫
Ω
vYα,k,n dx (5.25)

and hn : (0,+∞) → R is a solution to the problem
h′′

n + 1−2s
y h′

n − µα,k,nhn = 1, on (0,+∞),
hn(0) = 1,
limy→∞ hn(y) = 0.

(5.26)

From the proof of [37, Proposition 2.1], (5.26) admits a unique solution hn for any n ∈ N\{0}
and

− lim
y→0+

y1−2sh′
n(y) = cN,sµ

s
α,k,n, (5.27)

for some positive constant cN,s > 0 depending only on N and s. Furthermore for any y ∈
[0+,∞) by (5.25) and Remark 5.1.1∫

Ω

∣∣∣∣∂V∂y (x, y)
∣∣∣∣2 dx+

∫
Ω

|∇xV (x, y)|2 dx−
∫

Ω

α

|x|2k
V 2(x, y) dx

=
∞∑

n=1
v2

n(h′
n(y))2 + µα,k,nv

2
nhn(y)2. (5.28)

Proceeding exactly as in [37, Proposition 2.1] we can show that (5.16) holds. Hence, in view
of (5.13), V ∈ H1(C, y1−2s) and

∑j
n=1 vnYα,k,n(x)hn(y) → V in H1(C, y1−2s) as j → ∞.

In conclusion V ∈ H1
0,L(C, y1−2s) since

∑j
n=1 vnYα,k,n(x)hn(y) ∈ H1

0,L(C, y1−2s) for any j ∈
N, j ≥ 1.

In contrast to [37, Proposition 2.1], V might not be smooth for y > 0 since the functions
Yα,k,n might not be smooth on Ω. Then we prove that V satisfies (5.14) in the weak sense
given by (5.15). Let ϕ ∈ C∞

c (Ω × [0,+∞)). Then

ϕ(x, y) =
∞∑

n=1
ϕn(y)Yα,k,n(x), where ϕn(y) :=

∫
Ω
ϕ(x, y)Yα,k,n(x) dx,

and similarly to (5.28)∫
Ω

|∇ϕ(x, y)|2 dx−
∫

Ω

α

|x|2k
ϕ2(x, y) dx =

∞∑
n=1

(ϕ′
n(y))2 + µα,k,nϕn(y)2. (5.29)

Then by (5.25) and Remark 5.1.1∫
Ω

∇V (x, y) · ∇ϕ(x, y) dx−
∫

Ω

α

|x|2k
V (x, y)ϕ(x, y) dx

=
∞∑

n=1
vnh

′
n(y)ϕ′

n(y) + µα,k,nvnhn(y)ϕn(y). (5.30)
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Furthermore, for any j ∈ N, by Hölder’s inequality∣∣∣∣∣∣
∫ +∞

0
y1−2s

 ∞∑
n=j

vnh
′
n(y)ϕ′

n(y) + µα,k,nvnhn(y)ϕn(y)

 dy

∣∣∣∣∣∣
≤ 1

2

∫ +∞

0
y1−2s

 ∞∑
n=j

v2
n(h′

n(y))2 + µα,k,nv
2
nhn(y)2

 dy

+ 1
2

∫ +∞

0
y1−2s

 ∞∑
n=j

(ϕ′
n(y))2 + µα,k,nϕn(y)2

 dy.

By (5.28), (5.29) and the Monotone Convergence Theorem we conclude that

lim
j→∞

∫ ∞

0
y1−2s

 ∞∑
n=j

vnh
′
n(y)ϕ′

n(y) + µα,k,nvnhn(y)ϕn(y)

 dy = 0.

Hence we may change the order of summation and integration in (5.30) obtaining∫
C
y1−2s

(
∇V · ∇ϕ− α

|x|2k
V ϕ

)
dz =

∞∑
n=1

vn

∫ +∞

0
y1−2s(h′

n(y)ϕ′
n(y) + µα,k,nhn(y)ϕn(y)) dy.

An integration by parts, in view of (5.26) and (5.27), yields∫ +∞

0
y1−2s(h′

n(y)ϕ′
n(y) + µα,k,nhn(y)ϕn(y)) dy = cN,sµ

s
α,k,nϕn(0).

It follows that∫
C
y1−2s∇V · ∇ϕdz −

∫
C
y1−2s α

|x|2k
V ϕ dz = cN,s

∞∑
n=1

µs
α,k,nvnϕn(0)

and so we have proved (5.15). If V1 and V2 solve (5.14) then by (5.2), (5.15) and (5.13) we
deduce that ∫

C
y1−2s|∇(V1 − V2)|2 dz = 0, and Tr(V1 − V2) = 0

thus V1 = V2. Finally V solves the minimizing problem (5.17) in view of (5.15) and a density
argument.

Remark 5.2.1. For any r > 0 and any V,W ∈ H1(B+
r , y

1−2s), thanks to the Coarea Formula,∫
B+

r

∣∣∣∣y1−2s∇U · z

|z|
W

∣∣∣∣ dz =
∫ r

0

(∫
S+

ρ

∣∣∣∣y1−2s∇U · z
ρ
W

∣∣∣∣ dS
)
dρ

hence the function f(ρ) :=
∫

S+
ρ

∣∣∣y1−2s∇U · z
ρW

∣∣∣ dS is a well-defined element of L1(0, r). In
particular a.e. ρ ∈ (0, r) is a Lebesgue point of f .

Reasoning as in [60, Lemma 3.1] or [75, Proposition 3.7] we can prove the following.
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Proposition 5.2.2. Let U be a solution of (5.19). For a.e. r > 0 such that B′
r ⊂ Ω and any

W ∈ H1(B+
r , y

1−2s)

∫
B+

r

y1−2s

(
∇U · ∇W − α

|x|2k
UW

)
dz

= 1
r

∫
S+

r

y1−2s∇U · zW dS + cN,s

∫
B′

r

gTr(U) Tr(W ) dx. (5.31)

5.2.1 An Eigenvalue Problem on a hemisphere

In this section we provide a variational formulation of problem (5.20). To this end we consider
the space

L2(S+, θ1−2s
N+1 ) := {Ψ : S+ → R measurable:

∫
S+
θ1−2s

N+1 Ψ2 dS < +∞},

and the space H1(S+, θ1−2s
N+1 ) defined as the completion of C∞(S+) with respect to the norm

∥ϕ∥H1(S+,θ1−2s
N+1 ) :=

(∫
S+
θ1−2s

N+1 (ϕ2 + |∇Sϕ|2) dS
)1/2

,

where ∇S is the Riemannian gradient respect to the standard metric on S.

Proposition 5.2.3. For any k ∈ {3, . . . , N}(
k − 2

2

)2 ∫
S+
θ1−2s

N+1
Ψ2

|θ|2k
dS ≤

(
N − 2s

2

)2 ∫
S+
θ1−2s

N+1 |Ψ|2 dS +
∫
S+
θ1−2s

N+1 |∇SΨ|2 dS (5.32)

for any Ψ ∈ H1(S+, θ1−2s
N+1 ) .

Proof. Let ϕ ∈ C∞(S+), f ∈ C∞
c ((0,+∞)) with f ̸= 0, and V (z) := V (rθ) = ϕ(θ)f(r). From

(5.13) we obtain, passing in polar coordinates,

(
k − 2

2

)2 (∫ ∞

0
rN−1−2sf2(r) dr

)(∫
S+
θ1−2s

N+1
ϕ2

|θ|2k
dS

)

≤
(∫ ∞

0
rN+1−2s|f ′(r)|2 dr

)(∫
S+
θ1−2s

N+1ϕ
2 dS

)
+
(∫ ∞

0
rN−1−2sf2(r) dr

)(∫
S+
θ1−2s

N+1 |∇Sϕ|2 dS
)

and so, thanks to the optimality of the classical Hardy constant, see [83, Theorem 330],

(
k − 2

2

)2(∫
S+
θ1−2s

N+1
ϕ2

|θ|2k
dS

)

≤ inf
f∈C∞

c ((0,+∞)),f ̸=0

∫∞
0 rN+1−2s|f ′(r)|2 dr∫∞
0 rN−1−2sf(r)2 dr

(∫
S+
θ1−2s

N+1ϕ
2 dS

)
+
∫
S+
θ1−2s

N+1 |∇Sϕ|2 dS

=
(
N − 2s

2

)2 ∫
S+
θ1−2s

N+1 |ϕ|2 dS +
∫
S+
θ1−2s

N+1 |∇Sϕ|2 dS.

In conclusion (5.32) follows by density.
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For any k ∈ {3, . . . , N} and α as in (5.2), we say that γ is an eigenvalue of (5.20) if there
exists a function Z ∈ H1(S+, θ1−2s

N+1 ) \ {0} such that∫
S+
θ1−2s

N+1 ∇SZ · ∇SΨ dS −
∫
S+
θ1−2s

N+1
α

|θ|2k
ZΨ dS = γ

∫
S+
θ1−2s

N+1ZΨ dS, (5.33)

for any Ψ ∈ H1(S+, θ1−2s
N+1 ). By (5.2), (5.32), the Spectral Theorem, and the compactness of

the embedding H1(S+, θ1−2s
N+1 ) ↪→ L2(S+, θ1−2s

N+1 ) (see [111, Theorem 19.7]) the eigenvalues of
(5.20) are a non-decreasing and diverging sequence {γα,k,n}n∈N\{0} (we repeat each eigenvalue
according to its multiplicity). Let, for future reference,

Vα,k,n be the eigenspace of problem (5.20) associated to the eigenvalue γα,k,n, (5.34)
Mα,k,n be the dimension of Vα,k,n, (5.35)
{Zα,k,n,i : i ∈ {1, . . . ,Mα,k,n}} be a L2(S+, θ1−2s

N+1 ) orthonormal basis of Vα,k,n (5.36)
of eigenfunctions of problem (5.20).

Finally {Zα,k,n}n∈N\{0} :=
⋃∞

n=1{Zα,k,n,i : i ∈ {1, . . . ,Mα,k,n}} is an orthonormal basis of
L2(S+, θ1−2s

N+1 ).

Remark 5.2.4. It is worth noticing that Zα,k,n cannot vanish identically on S′. We argue
by contradiction. In view of [60, Lemma 2.1], we can show with a direct computation that

V (z) := |z|−
N−2s

2 +
√

( N−2s
2 )2+γα,k,n

Zα,k,n(z/|z|) solves div(y1−2s∇V )−y1−2s α
|x|2

k
V = 0 on RN+1

+

and satisfies both zero Dirichlet and zero Neumann condition on RN × {0}. Let

Σk := {z ∈ RN+1 : |x|k = 0}. (5.37)

Note that Σk has Lebesgue measure 0 and that V is a solution to an elliptic equitation
with a Muckenhoupt weight and bounded coefficients away from Σk. Then by the unique
continuation principles proved in [127], we conclude that V ≡ 0. Hence Zα,k,n ≡ 0 which is a
contradiction.

5.2.2 Inequalities in a weighted Sobolev space

In this subsection we prove some useful inequalities.

Proposition 5.2.5. For any r > 0, any k ∈ {0, . . . , N}, and any V ∈ H1(B+
r , y

1−2s)(
k − 2

2

)2 ∫
B+

r

y1−2s V
2

|x|2k
dz ≤

∫
B+

r

y1−2s|∇V |2 dz + N − 2s
2r

∫
S+

r

y1−2sV 2 dz. (5.38)

Proof. By density it is enough to prove (5.38) for any ϕ ∈ C∞(B+
r ). Passing in polar coordi-
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nates, by (5.32) and [60, Lemma 2.4], we have that(
k − 2

2

)2 ∫
B+

r

y1−2s V
2

|x|2k
dz =

(
k − 2

2

)2 ∫ r

0
ρN−1−2s

(∫
S+

V 2(ρθ)
|θ|2k

dS

)
dρ

≤
∫ r

0
ρN−1−2s

((
N − 2s

2

)2 ∫
S+
θ1−2s

N+1 |V 2(ρθ)|2 dS +
∫
S+
θ1−2s

N+1 |∇SV (ρθ)|2 dS
)
dρ

=
(
N − 2s

2

)2 ∫
B+

r

y1−2s V
2

|z|2
dz +

∫ r

0
ρN−1−2s

(∫
S+
θ1−2s

N+1 |∇SV (ρθ)|2 dS
)
dρ

≤ N − 2s
2r

∫
S+

r

y1−2sV 2 dS

+
∫ r

0
ρN+1−2s

(∫
S+
θ1−2s

N+1

(
1
ρ2 |∇SV (ρθ)|2 +

∣∣∣∣∂V∂ρ (ρθ)
∣∣∣∣2
)
dS

)
dρ

= N − 2s
2r

∫
S+

r

y1−2sV 2 dS +
∫

B+
r

y1−2s|∇V |2 dz,

hence we have proved (5.38).

Proposition 5.2.6. Let r > 0 and suppose that h : B′
r :→ R is a measurable function such

that
|h(x)| ≤ Ch|x|−2s+ε for a.e. x ∈ B′

r, (5.39)
for some positive constant Ch and some ε ∈ (0, 1). Then for any k ∈ {3, . . . , N}, any α as in
(5.2) and any V ∈ H1(B+

r , y
1−2s)∫

B′
r

|h| Tr(V )2 dx

≤ kN,s,hr
ε

(∫
B+

r

y1−2s|∇V |2 dz −
∫

B+
r

y1−2s α

|x|2k
V 2 dz + N − 2s

2r

∫
S+

r

y1−2sV 2 dz

)
, (5.40)

where kN,s,h is a positive constant depending only on N, s, Ch.
Proof. The claim follows from (5.39), [60, Lemma 2.5], and (5.38).

In view of (5.2) there exists r0 > 0 such that

B+
r0 ⊂ C and α

( 2
k − 2

)2
+ cN,skN,s,gr

ε
0 < 1, (5.41)

where kN,s,g is as in Proposition 5.2.6, cN,s as in Theorem 5.1.7 and g as in (5.3).
Proposition 5.2.7. Let k ∈ {3, . . . , N}, α as (5.2), g as in (5.3), cN,s as in Theorem 5.1.7
and r0 as in (5.41). Then for any V ∈ H1(B+

r , y
1−2s) and any r ∈ (0, r0]∫

B+
r

y1−2s

(
|∇W |2 − α

|x|2k
W 2

)
dz − cN,s

∫
B′

r

gTr(W )2 dx+ N − 2s
2r

∫
S+

r

y1−2sW 2dS

≥
(

1 − α

( 2
k − 2

)2
+ cN,skN,s,gr

ε
0

)

×
(∫

B+
r

y1−2s|∇W |2 dz + N − 2s
2r

∫
S+

r

y1−2sW 2dS

)
. (5.42)

Proof. The claim follows from Proposition 5.2.6, (5.3) and (5.38).
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5.3 Approximated problems and a Pohozaev-type Identity
In order to obtain a Pohozaev type identity for a weak solution of (5.18), we approximate it
with a family of solutions to more regular problems. Then we obtain a Pohozaev-type identity
for such solutions and pass to the limit.

Remark 5.3.1. Let r0 be as in (5.41). By (5.42) and (3.7), for any r ∈ (0, r0),

∥W∥g,α,k,0 :=
(∫

B+
r

y1−2s

(
|∇W |2 − α

|x|2k
W 2

)
dz − cN,s

∫
B′

r

gTr(W )2 dx

) 1
2

defines a norm on H1
0,S+

r
(B+

r , y
1−2s) (see (3.2)) equivalent to (3.1). Furthermore

∥W∥g,α,k :=
(∫

B+
r

y1−2s

(
|∇W |2 − α

|x|2k
W 2

)
dz − cN,s

∫
B′

r

gTr(W )2 dx+
∫

S+
r

y1−2sW 2 dz

) 1
2

defines a norm on H1(B+
r , y

1−2s) equivalent to (3.1).

Theorem 5.3.2. Let U be a weak solutions of (5.18), and r0 as in (5.41). Then there exists
λ̃ > 0 such that for any λ ∈ (0, λ̃) the problem

− div(y1−2s∇V ) = y1−2s α
|x|2

k
+λ2V, in B+

r0 ,

V = U, on S+
r0 ,

− limy→0+ y1−2s ∂V
∂y = cN,sgTr(V ), on B′

r0 ,

where cN,s > 0 is as in Theorem 5.1.7, admits a weak solution Uλ ∈ H1(B+
r0 , y

1−2s), i.e.∫
B+

r0

y1−2s∇Uλ · ∇W dz −
∫

B+
r0

y1−2s α

|x|2k + λ2UλW dz = cN,s

∫
B′

r0

gTr(V ) Tr(W ) dx (5.43)

for any W ∈ H1
0,S+

r0
(B+

r0 , y
1−2s) (see (3.2)), and Uλ = U on S+

r0. Furthermore

Uλ → U strongly in H1(B+
r0 , y

1−2s) as λ → 0+.

Proof. Let us consider the map Φ : R ×H1
0,S+

r
(B+

r , y
1−2s) → (H1

0,S+
r

(B+
r , y

1−2s))∗ defined as

Φ(λ, V )(W ) :=
∫

B+
r0

y1−2s∇V · ∇W dz −
∫

B+
r0

y1−2s α

|x|2k + λ2VW dz

− cN,s

∫
B′

r0

gTr(V ) Tr(W ) dx+
∫

B+
r0

y1−2s

(
α

|x|2k + λ2 − α

|x|2k

)
UW dz.

for any W ∈ H1
0,S+

r0
(B+

r0 , y
1−2s). It is clear that Φ is well defined and that Φ is continuous

in (0, 0) in view of Hölder’s inequality, Proposition 5.2.6, (5.3), and (5.38). Furthermore
Φ(0, 0) = 0.

Let us prove that ΦV (0, 0) ∈ L(H1
0,S+

r0
(B+

r0 , y
1−2s), (H1

0,S+
r0

(B+
r0 , y

1−2s)∗) is an isomorphism,
where ΦV is the partial derivative with respect to V of Φ. For any W1,W2 ∈ H1

0,S+
r0

(B+
r0 , y

1−2s)

(H1
0,S+

r0
(B+

r0 ,y1−2s))∗⟨ΦV (0, 0)(W1),W2⟩H1
0,S+

r0
(B+

r0 ,y1−2s) = (W1,W2)g,α,k,0 .
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Hence, by Remark 5.3.1, ΦV (0, 0) is the Rietz isomorphism associated to the norm ∥·∥g,α,k,0.
We are now in position to apply the Implicit Function Theorem to Φ in the point (0, 0)

and conclude that there exist λ̃ > 0, ρ > 0 and a function

f : (−λ̃, λ̃) → Bρ(0), (5.44)

continuous in 0, such that Φ(λ, V ) = 0 if and only if V = f(λ) for any λ ∈ (−λ̃, λ̃)
and V ∈ Bρ(0). The set Bρ(0) in (5.44) is defined as Bρ(0) = {V ∈ H1

0,S+
r0

(B+
r0 , y

1−2s) :
∥V ∥H1(B+

r0 ,y1−2s) < ρ}.
It follows that Uλ := U − f(λ) solves (5.43) for any λ ∈ (0, λ̃) since U is a solution of

(5.31). Furthermore Uλ → U strongly in H1(B+
r0 , y

1−2s) as λ → 0+ since f is continuous in 0
and f(0) = 0.

Remark 5.3.3. Let Uλ be a solution of (5.43). Then, reasoning in the same way of Propo-
sition 5.2.2, we can prove that for a.e. r ∈ (0, r0), a.e. ρ ∈ (0, r) and any W ∈ H1(B+

r \
B+

ρ , y
1−2s)

∫
B+

r \B+
ρ

y1−2s

(
∇Uλ · ∇W − α

|x|2k + λ2UλW

)
dz = 1

r

∫
S+

r

y1−2s∇Uλ · zW dS

− 1
ρ

∫
S+

ρ

y1−2s∇Uλ · zW dS + cN,s

∫
B′

r\B′
ρ

gTr(Uλ) Tr(W ) dx. (5.45)

Let ν be the outer normal vector to B+
r on S+

r , that is ν(z) = z
|z| .

Proposition 5.3.4. For any λ ∈ (0, λ̃), let Uλ be a solution of (5.43). Then for a.e. r ∈ (0, r0)

r

2

∫
S+

r

y1−2s|∇Uλ|2 dS − r

∫
S+

r

y1−2s|∇Uλ · ν|2 dS

+cN,s

2

∫
B′

r

(Ng + x · ∇g)| Tr(Uλ)|2 dx− cN,sr

2

∫
S′

r

g| Tr(Uλ)|2 dS

=N − 2s
2

∫
B+

r

y1−2s|∇Uλ|2 dz +
∫

B+
r

y1−2s α

|x|2k + λ2Uλ∇Uλ · z dz (5.46)

for a.e. r ∈ (0, r0).

Proof. We proceed in the spirit of Proposition 3.2.3, since (|x|2k+λ2)−1Uλ ∈ L2(B+
r , y

1−2s) and
g ∈ W 1,∞

loc (Ω \ {0}). Then by Theorem 3.2.1, Proposition 3.1.7 and the proof of Proposition
3.2.3, for any r ∈ (0, r0) and ρ ∈ (0, r),

∇xUλ ∈ H1(B+
r \B+

ρ , y
1−2s), and y1−2s∂Uλ

∂y
∈ H1(B+

r \B+
ρ , y

2s−1), (5.47)

Tr(Uλ) ∈ H1+s(B′
r \B′

ρ), and Tr(∇xUλ) = ∇ Tr(Uλ), (5.48)
∇Uλ · z ∈ H1(B+

r \B+
ρ , y

1−2s), and Tr(∇Uλ · z) = Tr(∇Uλ) · x,

where H1+s(B′
r \ B′

ρ) := {w ∈ H1(B′
r \ B′

ρ) : ∂w
∂xi

∈ W s,2(B′
r \ B′

ρ) for any i = 1, . . . , N}. We
also have, in view of (5.43), the following identity

div(y1−2s|∇Uλ|2z − 2y1−2s∇Uλ · z∇Uλ) = (N − 2s)|∇Uλ|2 + 2 α

|x|2k + λ2Uλ∇Uλ · z (5.49)
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in a distributional sense in B+
r \B+

ρ . Furthermore, thanks to (5.47),

div(y1−2s∇Uλ · z∇Uλ)

= −y1−2s α

|x|2k + λ2Uλ∇Uλ · z + y1−2s∇Uλ · ∇(∇Uλ · z) ∈ L1(B+
r \B+

ρ ) (5.50)

and so by (5.49)
div(y1−2s|∇Uλ|2z) ∈ L1(B+

r \B+
ρ ).

Let, for any δ ∈ (0, r),

B+
r,δ := {(x, y) ∈ B+

r : y > δ} and S+
r,δ := {(x, y) ∈ S+

r : y > δ}. (5.51)

Integrating by part on B+
r \B+

ρ we obtain, for any δ ∈ (0, ρ),∫
B+

r,δ
\B+

ρ,δ

div(y1−2s|∇Uλ|2z) dz = r

∫
S+

r,δ

y1−2s|∇Uλ|2 dS − ρ

∫
S+

ρ,δ

y1−2s|∇Uλ|2 dS

− δ2−2s
∫

B′√
r2−δ2

\B′√
ρ2−δ2

|∇Uλ|2(x, δ) dx. (5.52)

We claim that there exists a sequence δn → 0+ such that

lim
n→∞

δ2−2s
∫

B′√
r2−δ2

n

\B′√
ρ2−δ2

n

|∇Uλ|2(x, δ) dx = 0 (5.53)

arguing by contradiction. If the claim does not hold than there exist a constant C > 0 and
δ0 ∈ (0, ρ) such that B′

r × (0, δ0) ⊆ B+
r0 and

δ1−2s
∫

B′√
r2−δ2

\B′√
ρ2−δ2

|∇Uλ|2(x, δ) dx ≥ C

δ
for any δ ∈ (0, δ0). (5.54)

Then integrating (5.54) over (0, δ0) we obtain∫ δ0

0

(
δ1−2s

∫
B′

r

|∇Uλ|2(x, δ) dx
)
dδ ≥

∫ δ0

0

C

δ
dδ = +∞,

which is a contradiction in view of the Fubini-Tonelli Theorem. Then we can pass to the limit
as δ = δn in (5.52) and conclude that, thanks to the Dominate Convergence Theorem and
the Monotone Convergence Theorem,∫

B+
r \B+

ρ

div(y1−2s|∇Uλ|2z) dz = r

∫
S+

r

y1−2s|∇Uλ|2 dS − ρ

∫
S+

ρ

y1−2s|∇Uλ|2 dS (5.55)

for a.e r ∈ (0, r0) and a.e. ρ ∈ (0, r). Testing (5.45) with ∇U · z we obtain, in view of (5.50)
and Remark 5.3.3,∫

B+
r \B+

ρ

div(y1−2s∇Uλ · z∇Uλ) dz =
∫

B+
r \B+

ρ

y1−2s∇Uλ · ∇(∇Uλ · z) dz

−
∫

B+
r \B+

ρ

y1−2s α

|x|2k + λ2Uλ∇Uλ · z dz = 1
r

∫
S+

r

y1−2s|∇Uλ · z|2 dS

− 1
ρ

∫
S+

ρ

y1−2s|∇Uλ · z|2 dS + cN,s

∫
B′

r\B′
ρ

gTr(Uλ) ∇x Tr(Uλ) · x dx. (5.56)
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We note that gTr(Uλ)2x ∈ W 1,1(B′
r \ B′

ρ,RN ) by (5.3) and (5.48) hence integrating by part
we obtain∫

B′
r\B′

ρ

g Tr(Uλ)∇x Tr(Uλ) · x dx = −1
2

∫
B′

r\B′
ρ

(Ng + x · ∇g) Tr(Uλ)2 dx

+ r

2

∫
S′

r

g| Tr(Uλ)|2dS′ − ρ

2

∫
S′

ρ

g| Tr(Uλ)|2dS′. (5.57)

Arguing as in the proof of (5.53), we see that there exists a sequence ρn → 0+ such that

lim
n→∞

ρn

∫
S+

ρn

y1−2s|∇Uλ|2 dS = lim
n→∞

ρn

∫
S+

ρn

y1−2s

∣∣∣∣∇Uλ · z

|z|

∣∣∣∣2 dS
= lim

n→∞
ρn

∫
S′

ρn

g| Tr(Uλ)|2dS′ = 0.

Then by the Dominated Convergence Theorem, we can pass to the limit as ρ = ρn and n → ∞
in (5.55), (5.56), (5.57) and conclude that (5.46) holds in view of (5.49).

Proposition 5.3.5. Let U be a solution of (5.19). Then for a.e. r ∈ (0, r0)

r

2

∫
S+

r

y1−2s

(
|∇U |2 − α

|x|2k
U2
)
dS − r

∫
S+

r

y1−2s|∇U · ν|2 dS

+cN,s

2

∫
B′

r

(Ng + x · ∇g)| Tr(U)|2 dx− cN,s

2 r

∫
S′

r

g| Tr(U)|2 dS′

=N − 2s
2

∫
B+

r

y1−2s

(
|∇U |2 − α

|x|2k
U2
)
dz. (5.58)

Proof. Let r ∈ (0, r0) and B+
r,δ, S+

r,δ be as in (5.51) for any δ ∈ (0, r). Then, by (5.2),

div
(
y1−2s α

|x|2k + λ2U
2
λ z

)

= y1−2s

(
2 α

|x|2k + λ2Uλ∇Uλ · z + (N + 2 − 2s) α

|x|2k + λ2U
2
λ − 2 α|x|2k

(|x|2k + λ2)2U
2
λ

)
(5.59)

and y1−2s α
|x|2

k
+λ2U

2
λz ∈ W 1,1(B+

r,δ,R
N+1). Integrating (5.59) by part in B+

r,δ we obtain

r

∫
S+

r,δ

y1−2s α

|x|2k + λ2U
2
λ dS − δ2−2s

∫
B′√

r2−δ2

α

|x|2k + λ2U
2
λ(x, δ) dx

=
∫

B+
r,δ

y1−2s2 α

|x|2k + λ2Uλ∇Uλ · z dz

+
∫

B+
r,δ

y1−2s

(
(N + 2 − 2s) α

|x|2k + λ2U
2
λ − 2 α|x|2k

(|x|2k + λ2)2U
2
λ

)
dz. (5.60)

We claim that there exists a sequence δn → 0+ as n → ∞ such that

lim
n→∞

δ2−2s
n

∫
B′√

r2−δ2
n

α

|x|2k + λ2U
2
λ(x, δn) dx = 0 (5.61)
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arguing by contradiction. If (5.61) does not hold, then there exists a constant C > 0 and
δ0 ∈ (0, r) such that (0, δ0) ×B′

r ⊆ B+
r0 and

δ1−2s
∫

B′√
r2−δ2

α

|x|2k + λ2U
2
λ(x, δ) dx ≥ C

δ

for any δ ∈ (0, δ0). Integrating over (0, δ0) we obtain

+∞ >

∫ δ0

0
δ1−2s

(∫
B′

r

α

|x|2k + λ2U
2
λ(x, δ) dx

)
dδ ≥

∫ δ0

0

C

δ
dδ,

a contradiction in view of the Fubini-Tonelli Theorem. Passing to the limit for δ = δn as
n → ∞ in (5.60) we conclude that∫

B+
r

y1−2s α

|x|2k + λ2Uλ∇Uλ · z dz = r

2

∫
S+

r

y1−2s α

|x|2k + λ2U
2
λ dS

− 1
2

∫
B+

r

y1−2s

(
(N + 2 − 2s) α

|x|2k + λ2U
2
λ − 2 α|x|2k

(|x|2k + λ2)2U
2
λ

)
dz. (5.62)

Now we pass to the limit as λ → 0+, eventually along a suitable sequence λn → 0+, in
each term of (5.46) taking into account (5.62). We recall that, by Theorem 5.3.2, Uλ → U
strongly in H1(B+

r , y
1−2s) for any r ∈ (0, r0]. It is clear that for any r ∈ (0, r0)

lim
λ→0+

∫
B+

r

y1−2s|∇Uλ|2 dz =
∫

B+
r

y1−2s|∇U |2 dz.

Furthermore there exists a sequence λn → 0 as n → ∞ and G ∈ L2(B+
r0 , y

1−2s|x|−2
k ) such that

(N + 2 − 2s) α

|x|2k + λ2
n

U2
λn

− 2 α|x|2k
(|x|2k + λ2

n)2U
2
λn

→ (N − 2s) α

|x|2k
U2 for a.e. z ∈ B+

r0 ,

α

|x|2k + λ2
n

Uλn − α

|x|2k
U → 0 for a.e. z ∈ B+

r0 , (5.63)

|Uλn | ≤ |G| for a.e. z ∈ B+
r0 and any n ∈ N.

Then by the Dominated Convergence Theorem we conclude that for any r ∈ (0, r0)

lim
n→∞

∫
B+

r

y1−2s

(
(N + 2 − 2s) α

|x|2k + λ2
n

U2
λn

− 2 α|x|2k
(|x|2k + λ2

n)2U
2
λn

)
dz

= (N − 2s)
∫

B+
r

y1−2s α

|x|2k
U2 dz

and
lim

n→∞

∫
B+

r

y1−2s

∣∣∣∣∣ α

|x|2k + λ2
n

U2
λn

− α

|x|2k
U2
∣∣∣∣∣ dz = 0. (5.64)

By (5.3), (5.40), (5.38) and Proposition 3.4

lim
λ→0+

∫
B′

r

|Ng + ∇g · x| | Tr(Uλ) − Tr(U)|2 dx = 0 (5.65)

115



hence, for any r ∈ (0, r0),

lim
λ→0+

∫
B′

r

(Ng + x · ∇g)| Tr(Uλ)|2 dx =
∫

B′
r

(Ng + ∇g · x)| Tr(U)|2 dx.

By Fatou’s Lemma and the Coarea Formula,∫ r0

0

(
lim inf
λ→0+

∫
S+

r

y1−2s|∇Uλ − ∇U |2 dS
)
dr ≤ lim inf

λ→0+

∫
B+

r0

y1−2s|∇Uλ − ∇U |2 dS = 0,

and so
lim inf
λ→0+

∫
S+

r

y1−2s|∇Uλ|2 dS =
∫

S+
r

y1−2s|∇U |2 dS

for a.e. r ∈ (0, r0). Similarly, for a.e. r ∈ (0, r0)

lim inf
λ→0+

∫
S+

r

y1−2s|∇Uλ · ν|2 dS =
∫

S+
r

y1−2s|∇U · ν|2 dS,

and, by (5.65) and Fatou’s Lemma,

lim inf
λ→0+

∫
S′

r

g| Tr(Uλ)|2 d′S =
∫

S′
r

g| Tr(U)|2 dS′.

Furthermore passing to the limit for λ = λn as n → ∞ and λn is as in (5.63), we obtain

lim
n→∞

∫
S+

r

y1−2s α

|x|2k + λ2
n

U2
λn
dS =

∫
S+

r

y1−2s α

|x|2k
U2 dS

for a.e. r ∈ (0, r0), thanks to Fatou’s Lemma and (5.64). In conclusion (5.58) holds.

5.4 The Monotonicity Formula
Let U be a non-trivial solution of (5.19), let r0 be as in (5.41). For any r ∈ (0, r0] we define
the height and energy functions respectively as

H(r) := 1
rN+1−2s

∫
S+

r

y1−2sU2 dS, (5.66)

D(r) := 1
rN−2s

(∫
B+

r

y1−2s

(
|∇U |2 − α

|x|2k
U2
)
dz − cN,s

∫
B′

r

g| Tr(U)|2 dx
)
. (5.67)

The proof of the next Proposition is very similar to [47, Lemma 3.1] and we omit it. We
also recall that ν is the outer normal vector to B+

r on S+
r , that is ν(z) = z

|z| .

Proposition 5.4.1. We have that H ∈ W 1,1
loc ((0, r0]) and

H ′(r) = 2
rN+1−2s

∫
S+

r

y1−2s∂U

∂ν
U dS = 2

r
D(r), (5.68)

in a distributional sense and for a.e. r ∈ (0, r0).

Proposition 5.4.2. Let H be as in (5.66). Then H(r) > 0 for any r ∈ (0, r0].
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Proof. Assume by contradiction that there exists r ∈ (0, r0] such that H(r) = 0. From (5.31)
and Remark 5.3.1 we deduce that U ≡ 0 on B+

r . Let Σk be as in (5.37). The function U is a
solution of an elliptic equation with bounded coefficients away from Σk and RN × {0}. Then
the claim follows from classical unique continuation principles, see for example [134].

Proposition 5.4.3. The function D defined in (5.67) belongs to W 1,1
loc ((0, r0]) and

D′(r) = 2
rN+1−2s

(
r

∫
S+

r

y1−2s|∇U · ν|2 dS − cN,s

∫
B′

r

(
sg + 1

2x · ∇g
)

| Tr(U)|2 dx
)

(5.69)

in a distributional sense and for a.e. r ∈ (0, r0).

Proof. By the Coarea Formula

D′(r) = (2s−N)r−N+2s−1
(∫

B+
r

y1−2s

(
|∇U |2 − α

|x|2k
U2
)
dz − cN,s

∫
B′

r

g| Tr(U)|2 dx
)

+r−N+2s

(∫
S+

r

y1−2s

(
|∇U |2 − α

|x|2k
U2
)
dS − cN,s

∫
S′

r

g| Tr(U)|2 dS′
)

and so (5.69) follows from (5.58). Furthermore D ∈ W 1,1
loc ((0, r0]) by (5.69), (5.67) and the

Coarea Formula.

Let us define, for any r ∈ (0, r0], the frequency function N as

N (r) := D(r)
H(r) . (5.70)

In view of Proposition 5.4.2 the definition of N is well-posed.

Proposition 5.4.4. We have that N ∈ W 1,1
loc ((0, r0]) and for any r ∈ (0, r0]

N (r) > −N − 2s
2 . (5.71)

Furthermore
N ′(r) = v1(r) + v2(r) (5.72)

in a distributional sense and for a.e. r ∈ (0, r0), where

v1(r) :=
2r
((∫

S+
r
y1−2sU2 dS

)(∫
S+

r
y1−2s

∣∣∣∂U
∂ν

∣∣∣2 dS)−
(∫

S+
r
y1−2sU ∂U

∂ν dS
)2
)

(∫
S+

r
y1−2sU2 dS

)2 ,

and

v2(r) := −cN,s

∫
B′

r
(2sg + x · ∇g) | Tr(U)|2 dx∫

S+
r
y1−2sU2 dS

. (5.73)

Finally
v1(r) ≥ 0 for any r ∈ (0, r0]. (5.74)
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Proof. Since 1/H,D ∈ W 1,1
loc ((0, r0]) it follows that N ∈ W 1,1

loc ((0, r0]). We can deduce (5.71)
directly from (5.42) and (5.70). Furthermore by (5.68)

d

dr
N ′(r) = D′(r)H(r) −D(r)H ′(r)

H2(r) =
D′(r)H(r) − r

2(H ′(r))2

H2(r)

and so (5.72) follows from (5.66), (5.67) and (5.69). Finally (5.74) is a consequence of the
Cauchy-Schwartz inequality in L2(S+

r , y
1−2s) between the vectors U and ∂U

∂ν .

Proposition 5.4.5. There exists a constant C > 0 such that

|v2(r)| ≤ Cr−1+ε
(

N (r) + N − 2s
2

)
for any r ∈ (0, r0]. (5.75)

Proof. The claim follows from (5.3), (5.40), (5.42) and (5.73).

Proposition 5.4.6. There exists a constant C1 > 0 such that

N (r) ≤ C1 for any r ∈ (0, r0]. (5.76)

Proof. Thanks to Proposition 5.4.4, for a.e. r ∈ (0, r0)(
N + N − 2s

2

)′
(r) ≥ v2(r) ≥ −Cr−1+ε

(
N (r) + N − 2s

2

)
.

Hence an integration over (r, r0) yields

N (r) ≤ −N − 2s
2 +

(
N (r0) + N − 2s

2

)
e

C
ε

rε
0

for any r ∈ (0, r0).

Proposition 5.4.7. The limit
γ := lim

r→0+
N (r) (5.77)

exists and it is finite.

Proof. Since N ∈ W 1,1
loc ((0, r0]) by Proposition 5.4.4, for any r ∈ (0, r0)

N (r) = N (r0) −
∫ r0

r
N ′(r) dr = N (r0) −

∫ r0

r
v1(r) dr −

∫ r0

r
v2(r) dr. (5.78)

Since v1 ≥ 0 by (5.74) and v2 ∈ L1(0, r0) by (5.75) and (5.76), we can pass to the limit
as r → 0+ in (5.78) and conclude that the limit (5.77) exists. From (5.71) and (5.76) it is
finite.

The proofs of Propositions 5.4.8 and 5.4.9 are standard and we omit them, see for example
[47, Lemma 3.7, Lemma 4.6], [65, Lemma 5.6, Lemma 6.4], [65, Lemma 5.9, Lemma 6.6] or
Propositions 4.4.9, and 4.4.10 in Chapter 4.

Proposition 5.4.8. Let γ be as in (5.77). Then there exists a constant K > 0 such that

H(r) ≤ Kr2γ for any r ∈ (0, r0). (5.79)

Furthermore for any σ > 0 there exist a constant Kσ such that

H(r) ≥ Kσr
2γ+σ for any r ∈ (0, r0). (5.80)
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Proposition 5.4.9. Let γ be as in (5.77). Then there exists the limit

lim
r→0+

r−2γH(r) (5.81)

and it is finite.

5.5 The Blow-Up Analysis
Let U be a non-trivial solution of (5.19) and let r0 be as in (5.41). For any λ ∈ (0, r0] let

V λ(z) := U(λz)√
H(λ)

. (5.82)

By a change of variables, it is clear that V λ weakly solves− div(y1−2s∇V λ) = y1−2s α
|x|2

k
V λ, in B+

r0/λ,

− limy→0+ y1−2s ∂V λ

∂y = cN,sλ
2sg(λ·) Tr(V λ), on B′

r0/λ,

in the sense that∫
B+

r0/λ

y1−2s∇V λ ·∇W dz−
∫

B′
r0/λ

y1−2s α

|x|2k
V λW dz = cN,sλ

2s
∫

B+
r0/λ

g(λ·) Tr(V λ) Tr(W ) dx

for any W ∈ H1
0,S+

r0/λ

(B+
r0/λ, y

1−2s) (see (3.2)). Furthermore by (5.66) and a change of vari-
ables ∫

S+
θ1−2s

N+1 |V λ(θ)|2dS = 1 for any λ ∈ (0, r0]. (5.83)

Since the frequency function N is bounded on [0, r0] (see (5.71) and (5.76)) we can prove the
following proposition.

Proposition 5.5.1. The family of functions {V λ}λ∈(0,r0] is bounded in H1(B+
1 , y

1−2s).

Proof. For any λ ∈ (0, r0), thanks to (5.42), (5.82) and a change of variables,

N (λ) = λ2s−N

H(λ)

(∫
B+

λ

y1−2s

(
|∇U |2 − α

|x|2k
U2
)
dz − cN,s

∫
B′

λ

g| Tr(U)|2 dx
)

≥
(

1 − α

( 2
k − 2

)2
+ cN,skN,s,gr

ε
0

)
λ2s−N

H(λ)

(∫
B+

λ

y1−2s|∇U |2 dz
)

− N − 2s
2

=
(

1 − α

( 2
k − 2

)2
+ cN,skN,s,gr

ε
0

)(∫
B+

1

y1−2s|∇V λ|2 dz
)

− N − 2s
2 .

Hence the claim follows from (5.76), (5.83) and (5.38).

Now we establish the following doubling property.
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Proposition 5.5.2. There exists a constant C3 > 0 such that

1
C3
H(λ) ≤ H(Rλ) ≤ C3H(λ), (5.84)∫

B+
R

y1−2s|V λ|2 dz ≤ C32N+2−2s
∫

B+
1

y1−2s|V Rλ|2 dz, (5.85)∫
B+

R

y1−2s|∇V λ|2 dz ≤ C32N−2s
∫

B+
1

y1−2s|∇V Rλ| dz, (5.86)

for any λ ∈ (0, r0) and any R ∈ [1, 2].

Proof. By (5.68), (5.71), and (5.76)

−N − 2s
r

≤ H ′(r)
H(r) = 2N (r)

r
≤ 2C1

r
for a.e. r ∈ (0, r0).

An integration over (λ,Rλ) with R ∈ (1, 2] yields

R2s−N ≤ H(Rλ)
H(λ) ≤ R2C1

thus (5.84) holds for R ∈ (1, 2] while if R = 1 it is obvious.
Furthermore for any λ ∈ (0, r0), by (5.84) and a change of variables,

∫
B+

R

y1−2s|V λ|2 dz = λ−N−2+2s

H(λ)

∫
B+

Rλ

y1−2s|U |2 dz ≤ C3
λ−N−2+2s

H(λR)

∫
B+

Rλ

y1−2s|U |2 dz

= C3R
N+2−2s

∫
B+

1

y1−2s|V λR|2 dz ≤ C32N+2−2s
∫

B+
1

y1−2s|V λR|2 dz,

for any R ∈ [1, 2]. Hence we have proved (5.85) and (5.86) follows from (5.84) in the same
way.

In view of the Coarea Formula, there exists a subset M ⊂ (0, r0) of Lebesgue measure 0
such that |∇U | ∈ L2(S+

r , y
1−2s) and (5.31) holds for any r ∈ (0, r0) \ M.

Proposition 5.5.3. There exist M > 0 and λ0 > 0 such that for any λ ∈ (0, λ0) there exists
Rλ ∈ [1, 2] such that Rλλ ̸∈ M and∫

S+
Rλ

y1−2s|∇V λ|2 dS ≤ M

∫
B+

Rλ

y1−2s(|∇V λ|2 + |V λ|2) dz. (5.87)

Proof. By Proposition 5.5.1 {V λ}λ∈(0,
r0
2 ) is bounded in H1(B+

2 , y
1−2s). Hence

lim sup
λ→0+

∫
B+

2

y1−2s(|∇V λ|2 + |V λ|2) dz < +∞. (5.88)

Let, for any λ ∈
(
0, r0

2
)
,

fλ(R) :=
∫

B+
R

y1−2s(|∇V λ|2 + |V λ|2) dz.
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The function f is absolutely continuous on [1, 2] and, thanks to the Coarea Formula, its
distributional derivative is given by

f ′
λ(R) =

∫
S+

R

y1−2s(|∇V λ|2 + |V λ|2) dS for a.e. R ∈ [1, 2].

We argue by contradiction supposing that for any M > 0 there exists λn → 0+ such that∫
S+

R

y1−2s(|∇V λn |2 + |V λn |2) dS > M

∫
B+

R

y1−2s(|∇V λn |2 + |V λn |2) dz

for any n ∈ N and any R ∈ [1, 2] \ 1
λn

M, hence for a.e. R ∈ [1, 2]. Therefore

f ′
λn

(R) > Mfλn(R) for a.e. R ∈ [1, 2] and any n ∈ N.

An integration over [1, 2] yields fλn(2) > eMfλn(1) for any n ∈ N. Hence

lim inf
n→∞

fλn(1) ≤ lim sup
n→∞

fλn(1) ≤ e−M lim sup
n→∞

fλn(2)

and so
lim inf
λ→0+

fλ(1) ≤ e−M lim sup
λ→0+

fλ(2)

for any M > 0. It follows that lim infλ→0+ fλ(1) = 0 by (5.88). We conclude that there exists
a sequence λn → 0+ as n → ∞ and V ∈ H1(B+

1 , y
1−2s) such that

lim
n→∞

∫
B+

1

y1−2s(|∇V λn |2 + |V λn |2) dz = 0

and Vλn ⇀ V weakly in H1(B+
1 , y

1−2s), taking into account Proposition 5.5.1. By Proposition
3.4, (5.83) and the lower semicontinuity of norms, we obtain∫

B+
1

y1−2s(|∇V |2 + |V |2) dz = 0 and
∫
S+
θ1−2s

N+1V
2 dS = 1

which is a contradiction.

Proposition 5.5.4. Let Rλ be as in Proposition 5.5.3. Then there exists a constant M > 0
such that ∫

S+
θ1−2s

N+1 |∇V Rλλ|2dS ≤ M for any λ ∈
(

0,min
{
λ0,

r0
2

})
. (5.89)

Proof. By a change of variables, the fact that Rλ ∈ [1, 2] and (5.82)
∫
S+
θ1−2s

N+1 |∇V Rλλ|2dS = R−N+1+2s
λ

H(λ)
H(Rλλ)

∫
S+

Rλ

y1−2s|∇V λ|2dS

≤ 2C3M

∫
B+

Rλ

y1−2s(|∇V λ|2 + |V λ|2) dz

≤ 2N+3−2sC2
3M

∫
B+

1

y1−2s(|∇V Rλλ|2 + |V Rλλ|2) dz ≤ M < +∞,

for some M > 0, in view of Proposition 5.5.1, (5.84), (5.85), (5.86), and (5.87).
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Proposition 5.5.5. Let U be a non-trivial solution of (5.19) and γ be as in (5.77). Then

(i) there exists n ∈ N \ {0} such that

γ = −N − 2s
2 +

√(
N − 2s

2

)2
+ γα,k,n, (5.90)

where γα,k,n is an eigenvalue of problem (5.20),

(ii) for any sequence λp → 0+ as p → ∞ there exists a subsequence λpq → 0+ as q → ∞
and a eigenfunction Z of problem (5.20), corresponding to the eigenvalue γα,k,n, such
that ∥Z∥L2(S+,θ1−2s

N+1 ) = 1 and

U(λpqz)√
H(λpq )

→ |z|γZ
(
z

|z|

)
strongly in H1(B+

1 , y
1−2s) as q → ∞.

Proof. Let V λ be as in (5.82) and Rλ as in Proposition 5.5.3. Then {V Rλλ}λ∈(0,min{λ0,
r0
2 }) is

bounded in H1(B+
1 , y

1−2s), thanks to Proposition 5.5.1. Let λp → 0+ as p → ∞. Then there
exists a subsequence λpq → 0+ as q → ∞ and V ∈ H1(B+

1 , y
1−2s) such that V Rλpq

λpq ⇀ V
weakly in H1(B+

1 , y
1−2s) as q → ∞. By Proposition 3.4 the trace operator TrS+

1
is compact

and so ∫
S+
θ1−2s

N+1 |V |2 dS = 1, (5.91)

in view of (5.83). Hence V is non-trivial. We claim that

V
Rλpq

λpq ⇀ V strongly in H1(B+
1 , y

1−2s) as q → ∞. (5.92)

For q sufficiently large B+
1 ⊆ B+

r0/(Rλpq
λpq ) and since Rλpq

λpq ̸∈ M, where M is as in Propo-
sition 5.5.3, we have that

∫
B+

1

y1−2s

(
∇V Rλpq

λpq · ∇W − α

|x|2k
V

Rλpq
λpqW

)
dz =

∫
S+
θ1−2s

N+1
∂V

Rλpq
λpq

∂ν
W dS

+ cN,s(Rλpq
λpq )2s

∫
B′

1

g(Rλpq
λpq ·) Tr(V Rλpq

λpq ) Tr(W ) dx (5.93)

for any W ∈ H1(B+
1 , y

1−2s), thanks to (5.31) and a change of variables. We will pass to the
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limit as q → ∞ in (5.93). To this end we observe that, for any W ∈ H1(B+
1 , y

1−2s),∣∣∣∣∣λ2s
∫

B′
1

g(λ·) Tr(V λ) Tr(W ) dx
∣∣∣∣∣ =

∣∣∣∣∣λ2s−N

H(λ)

∫
B′

λ

g(x) Tr(U)(x) Tr(W )(λx) dx
∣∣∣∣∣

≤ kN,s,g
λ2s+ε−N

H(λ)

∣∣∣∣∣
∫

B+
λ

y1−2s|∇U |2 dz −
∫

B+
λ

y1−2s α

|x|2k
|U |2 dz + N − 2s

2λ

∫
S+

λ

y1−2s|U |2 dS
∣∣∣∣∣

1
2

×
∣∣∣∣∣
∫

B+
λ

y1−2s|∇W (λ·)|2 dz −
∫

B+
λ

y1−2s α

|x|2k
W (λ·)2 dz + N − 2s

2λ

∫
S+

λ

y1−2s|W (λ·)|2 dS
∣∣∣∣∣

1
2

= kN,s,gλ
ε

∣∣∣∣∣
∫

B+
1

y1−2s|∇V λ|2 dz −
∫

B+
1

y1−2s α

|x|2k
|V λ|2 dz + N − 2s

2

∣∣∣∣∣
1
2

×
∣∣∣∣∣
∫

B+
1

y1−2s|∇W |2 dz −
∫

B+
1

y1−2s α

|x|2k
W 2 dz + N − 2s

2

∫
S+
θ1−2s

N+1 |W |2 dS
∣∣∣∣∣

1
2

by a change of variables, the Hölder inequality, (5.3), (5.40), (5.82) and (5.83). We conclude
that

lim
λ→0+

∣∣∣∣∣λ2s
∫

B′
1

g(λ·) Tr(V λ) Tr(W ) dx
∣∣∣∣∣ = 0, (5.94)

by Proposition 5.5.1 and (5.38). Thanks to (5.89), there exists a function f ∈ L2(S+, θ1−2s
N+1 )

such that
∂V

Rλpq
λpq

∂ν
⇀ f weakly in L2(S+, θ1−2s

N+1 ) as q → ∞, (5.95)

up to a subsequence. Hence

lim
q→∞

∫
S+
θ1−2s

N+1
∂V

Rλpq
λpq

∂ν
W dS =

∫
S+
θ1−2s

N+1fW dS

for any W ∈ H1(B+
1 , y

1−2s). Furthermore

lim
q→∞

∫
B+

1

y1−2s

(
∇V Rλpq

λpq · ∇W − α

|x|2k
V

Rλpq
λpqW

)
dz

=
∫

B+
1

y1−2s

(
∇V · ∇W − α

|x|2k
VW

)
dz

by Remark 5.3.1. It follows that∫
B+

1

y1−2s

(
∇V · ∇W − α

|x|2k
VW

)
dz =

∫
S+
θ1−2s

N+1fW dS

for any W ∈ H1(B+
1 , y

1−2s), that is V is a weak solution of the problemdiv(y1−2s∇V ) = α
|x|2

k
V, in B+

1 ,

− limy→0+ y1−2s ∂V
∂y = 0, on B′

1.
(5.96)
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Furthermore testing (5.93) with V
Rλpq

λpq ,

lim
q→∞

∫
B+

1

y1−2s

(∣∣∣∇V Rλpq
λpq

∣∣∣2 − α

|x|2k

∣∣∣V Rλpq
λpq

∣∣∣2) dz

= lim
q→∞

∫
S+
θ1−2s

N+1
∂V

Rλpq
λpq

∂ν
V

Rλpq
λpq dS =

∫
S+
θ1−2s

N+1fW dS,

thanks to (5.95) and the compactness of the trace operator TrS+
1

, see Proposition 3.4. Hence
from Remark 5.3.1 and (5.83) we deduce (5.92). Let for any r ∈ (0, 1]

Dq(r) = 1
rN−2s

( ∫
B+

r

y1−2s

(
|∇V Rλpq

λpq |2 − α

|x|2k
|V Rλpq

λpq |2
)
dz

− cN,s(Rλpq
λpq )2s

∫
B′

r

g(Rλpq
λpq ·)| Tr(V Rλpq

λpq )|2 dx
)

and
Hq(r) = 1

rN+1−2s

∫
S+

r

y1−2s|V Rλpq
λpq |2 dS.

For any r ∈ (0, 1] we also define

DV (r) = 1
rN−2s

∫
B+

r

y1−2s

(
|∇V |2 − α

|x|2k
|V |2

)
dz

and
HV (r) = 1

rN+1−2s

∫
S+

r

y1−2s|V |2 dS. (5.97)

Thanks to a scaling argument it is easy to see that

Nq(r) := Dq(r)
Hq(r) =

D(Rλpq
λpqr)

H(Rλpq
λpqr)

= N (Rλpq
λpqr) for any r ∈ (0, 1].

By (5.92), (5.94) and Remark 5.3.1, it follows that

Hq(r) → HV (r) and Dq(r) → DV (r), as q → ∞, for any r ∈ (0, 1].

Furthermore HV (r) > 0 for any r ∈ (0, 1] by Proposition 5.4.2 in the case g ≡ 0 and Ω = B′
2.

In particular the function

N : (0, 1] → R, NV (r) := DV (r)
HV (r)

is well defined and NV ∈ W 1,1
loc ((0, 1]) by Proposition 5.4.4 in the case g ≡ 0 and Ω = B′

2. In
view of (5.97), (5.77)

NV (r) = lim
q→∞

N (Rλpq
λpqr) = γ for any r ∈ (0, 1]. (5.98)

Hence NV (r) is constant in [0, 1] and so

N ′
V (r) ≡ 0 for any r ∈ (0, 1].
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By Proposition 5.4.4 it follows that(∫
S+

r

y1−2sV 2 dS

)(∫
S+

r

y1−2s

∣∣∣∣∂V∂ν
∣∣∣∣2 dS

)
−
(∫

S+
r

y1−2sV
∂V

∂ν
dS

)2
= 0

for a.e. r ∈ (0, 1), that is, equality holds in the Cauchy-Schwartz inequality for the vectors
V and ∂V

∂ν in L2(S+
r , y

1−2s) for a.e. r ∈ (0, 1). Therefore there exists a function η(r) defined
a.e. in (0, 1) such that

∂V

∂ν
(rθ) = η(r)V (rθ) for a.e. r ∈ (0, 1) and a.e. θ ∈ S+.

Multiplying by V (rθ) and integrating over S+,∫
S+
θ1−2s

N+1
∂V

∂ν
(rθ)V (rθ) dS = η(r)

∫
S+
θ1−2s

N+1 |V (rθ)|2 dS for a.e. r ∈ (0, 1)

and so η(r) = H′
V (r)

2HV (r) = γ
r for a.e. r ∈ (0, 1) by (5.68), (5.68) and (5.98). Since V is smooth

away from Σk by classical elliptic regularity theory (see (5.37)), an integration over (r, 1)
yields

V (rθ) = rγV (1θ) = rγZ(θ) for any r ∈ (0, 1] and a.e. θ ∈ S+, (5.99)
where Z = V|S+ and ∥Z∥L2(S+,θ1−2s

N+1 ) = 1 by (5.91) . In view of [60, Lemma 1.1], (5.99) and
(5.96) the function Z is an eigenfunction of problem (5.20) and the correspondent eigenvalue
γα,k,n satisfies the relationship γ(N − 2s+ γ) = γα,k,n, that is

γ = −N − 2s
2 +

√(
N − 2s

2

)2
+ γα,k,n or γ = −N − 2s

2 −

√(
N − 2s

2

)2
+ γα,k,n

Since rγZ(θ) ∈ H1(B+
1 , y

1−2s) by (5.99) then r2γ−2Z2(θ) ∈ L1(B+
1 , y

1−2s) by (5.38) and so
we conclude that (5.90) must hold.

Consider now the sequence {V λpq }q∈N. Up to a further subsequence, V λpq ⇀ Ṽ weakly in
H1(B+

1 , y
1−2s) as q → ∞, for some Ṽ ∈ H1(B+

1 , y
1−2s) and Rλpq

→ R̃, for some R̃ ∈ [1, 2] as
q → ∞. The strong convergence of {V Rλpq

λpq }q∈N to V in H1(B+
1 , y

1−2s) implies that, up to
a further subsequence, both V Rλpq

λpq and
∣∣∣∇V Rλpq

λpq

∣∣∣ are dominated a.e. by a L2(B+
1 , y

1−2s)
function, uniformly with respect to q ∈ N. Up to a further subsequence, we may also assume
that the limit

ℓ = lim
q→∞

H(Rλpq
λpq )

H(λpq )
exists, it is finite and strictly positive, taking into account (5.84). Then from the Dominated
Convergence Theorem and a change of variables we deduce that

lim
q→∞

∫
B+

1

y1−2sV λpq (z)ϕ(z) dz = lim
q→∞

RN+2−2s
λpq

∫
B+

1/Rλpq

y1−2sV λpq (Rλpq
z)ϕ(Rλpq

z) dz

= lim
q→∞

RN+2−2s
λpq

√√√√H(Rλpq
λpq )

H(λpq )

∫
B+

1

y1−2sχB+
1/Rλpq

(z)V Rλpq
λpq (z)ϕ(Rλpq

z) dz

= R̃N+2−2s
√
ℓ

∫
B+

1/R̃

y1−2sV (z)ϕ(R̃z) dz =
√
ℓ

∫
B+

1

y1−2sV (z/R̃)ϕ(z) dz
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for any ϕ ∈ C∞(B+
1 ). By density we conclude that V λpq ⇀

√
ℓV (·/R̃) weakly in L2(B+

1 , y
1−2s)

as q → ∞. Since V λpq ⇀ Ṽ weakly in H1(B+
1 , y

1−2s) as q → ∞ we conclude that Ṽ =√
ℓV (·/R̃) and so V λpq ⇀

√
ℓV (·/R̃) weakly in H1(B+

1 , y
1−2s) as q → ∞. Furthermore

lim
q→∞

∫
B+

1

y1−2s|∇V λpq (z)|2 dz = lim
q→∞

RN+2−2s
λpq

∫
B+

1/Rλpq

y1−2s|∇V λpq (Rλpq
z)|2 dz

= lim
q→∞

RN−2s
λpq

H(Rλpq
λpq )

H(λpq )

∫
B+

1

y1−2sχB+
1/Rλpq

(z)|∇V Rλpq
λpq (z)|2 dz

= R̃N−2sℓ

∫
B+

1/R̃

y1−2s|∇V |2dz =
∫

B+
1

y1−2s|
√
ℓ∇V (·/R̃)|2 dz,

by the Dominated Convergence Theorem and a change of variables. Hence V λpq →
√
ℓV (·/R̃)

strongly in H1(B+
1 , y

1−2s) as q → ∞.
Thanks to (5.99), V is a homogeneous function of degree γ and so Ṽ =

√
ℓR̃−γV . More-

over, since V λpq → Ṽ strongly in L2(S+, θ1−2s
N+1 ) as q → ∞ by Proposition 3.4,

1 =
∫
S+
θ1−2s

N+1 |Ṽ (θ)|2dS =
√
ℓR̃−γ

∫
S+
θ1−2s

N+1 |V (θ)|2dS =
√
ℓR̃−γ

in view of (5.83) and (5.91). We conclude that Ṽ = V thus completing the proof.

Now we show that the limit (5.81) is strictly positive, by means of a Fourier analysis with
respect to the L2(S+, θ1−2s

N+1 )-orthonormal basis {Zα,k,n}n∈N\{0} of eigenfunctions of problem
(5.20), see Subsection 5.2.1. To this end let us define for any k ∈ {3, . . . , N}, α as in (5.2),
and n ∈ N \ {0}

φn,i(λ) :=
∫
S+
θ1−2s

N+1U(λθ)Zα,k,n,i(θ) dS, for any λ ∈ (0, r0], i ∈ 1, . . . ,Mα,k,n, (5.100)

see (5.35) for the definition of Mα,k,n, and

Υn,i(λ) := cN,s

∫
B′

λ

gTr(U) Tr
(
Zα,k,n,i

( ·
| · |

))
dx, . (5.101)

for any λ ∈ (0, r0], i ∈ 1, . . . ,Mα,k,n. Thanks to Proposition 5.4.7 and Proposition 5.5.5 there
exists n0 ∈ N \ {0} such that

γ = lim
r→0+

N (r) = −N − 2s
2 +

√(
N − 2s

2

)2
+ γα,k,n0 . (5.102)

For any i ∈ {1, . . . ,Mα,k,n0} we need to compute the asymptotics of φn0,i(λ) as λ → 0+.

Proposition 5.5.6. Let n0 be as in (5.102). Then for any i ∈ {1, . . . ,Mα,k,n0} and any
r ∈ (0, r0]

φn0,i(λ) = λγ

(
φn0,i(r)
rγ

+ γr−N+2s−2γ

N − 2s+ 2γ

∫ r

0
ρ−1+ρΥn0,i(ρ)dρ

+ N − 2s+ γ

N − 2s+ 2γ

∫ r

λ
ρ−N−1+2s−γΥn0,i(ρ) dρ

)
+O(λγ+ε) as λ → 0+. (5.103)
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Proof. Let n ∈ N and i ∈ {1, . . . ,Mα,k,n}. Let f ∈ C∞
c (0, r0). Then testing (5.19) with the

function |z|N+1−2sf(|z|)Zα,k,n,i(z/|z|) and passing in polar coordinates, by (5.33), we obtain

−φ′′
n,i(λ) − N + 1 − 2s

λ
φ′

n,i(λ) + γα,k,n

λ2 φn,i(λ) = ζn,i(λ) in (0, r0)

in a distributional sense, where the distribution ζn,i ∈ D′(0, r0) is define as

D′(0,r0)⟨ζn,i, f⟩D(0,r0) =
∫ r0

0

f(λ)
λ2−2s

(∫
S′
g(λ·) Tr(U)(λ·) Tr

(
Zα,k,n,i

( ·
| · |

))
dS′

)
dλ, (5.104)

for any f ∈ C∞
c (0, r0). In particular ζn,i belongs to L1

loc((0, r0]) by the Coarea Formula and
a change of variables. If Υn,i is as in (5.101), a direct computation shows that

Υ′
n,i(λ) = λN+1−2sζn,i(λ) in D′(0, r0)

hence
−
(
λN+1−2s+2σn

(
λ−σnφn,i(λ)

)′)′
= λσnΥ′

n,i(λ) in D′(0, r0), (5.105)

where

σn := −N − 2s
2 +

√(
N − 2s

2

)2
+ γα,k,n. (5.106)

From (5.105) and (5.104) we deduce that the function λ 7→ λN+1−2s+2σn

(
λ−σnφ′

n,i(λ)
)

be-
longs to W 1,1

loc ((0, r0]) hence an integration over (λ, r) yields(
λ−σnφn,i(λ)

)′ = −λ−N−1+2s−σnΥn,i(λ)

− λ−N−1+2s−2σnσn

(
C(r) +

∫ r

λ
ρσn−1Υn,i(ρ) dρ

)
(5.107)

for any r ∈ (0, r0], for some real number C(r) depending on r, α, k, n and i. Since in view of
(5.107) λ → λ−σnφn,i(λ) belongs to W 1,1

loc ((0, r0]), a further integration yields

φn,i(λ) = λσn

(
r−σnφn,i(r) +

∫ r

λ
ρ−N−1+2s−σnΥn,i(ρ) dρ

+ σn

∫ r

λ
ρ−N−1+2s−2σn

(
C(r) +

∫ r

ρ
tσn−1Υn,i(t) dt

)
dρ

)

= λσn

(
r−σnφn,i(r) +

∫ r

λ
ρ−N−1+2s−σnΥn,i(ρ) dρ+ σnC(r)r−N+2s−2σn

−N + 2s− 2σn

− σnC(r)λ−N+2s−2σn

−N + 2s− 2σn
− σnλ

−N+2s−2σn

−N + 2s− 2σn

∫ r

λ
tσn−1Υn,i(t) dt

+ σn

−N + 2s− 2σn

∫ r

λ
ρ−N−1+2s−σnΥn,i(ρ) dρ

)

= λσn

(
φn,i(r)
rσn

− σnC(r)r−N+2s−2σn

N − 2s+ 2σn
+ N − 2s+ σn

N − 2s+ 2σn

∫ r

λ
ρ−N−1+2s−σnΥn,i(ρ) dρ

)

+ σnλ
−N+2s−σn

N − 2s+ 2σn

(
C(r) +

∫ r

λ
tσn−1Υn,i(t) dt

)
(5.108)
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for any λ ∈ (0, r0].
Let n0 be as in (5.102) and i ∈ {1, . . . ,Mα,k,n0}. By (5.102) and (5.106), γ = σn0 and

λ−N−1+2s−γ |Υn0,i(λ)| < cN,sλ
−N−1+2s−γ

∫
B′

λ

|g|| Tr(U)
∣∣∣∣Tr

(
Zα,k,n,i

( ·
| · |

))∣∣∣∣ dx
≤ λ−N−1+2s−γ

(∫
B′

λ

|g|| Tr(U)|2dx
) 1

2
(∫

B′
λ

|g|
∣∣∣∣Tr

(
Zα,k,n,i

( ·
| · |

))∣∣∣∣2 dx
) 1

2

≤ kN,s,gλ
−N−1+2s−γ+ε

×
(∫

B+
λ

y1−2s|∇U |2 dz −
∫

B+
λ

y1−2s α

|x|2k
U2 dz + N − 2s

2λ

∫
S+

λ

y1−2sU2 dz

) 1
2

×
(∫

B+
λ

y1−2s|∇Zα,k,n,i(z/|z|)|2 dz −
∫

B+
λ

y1−2s α

|x|2k
|Zα,k,n,i(z/|z|)|2 dz

+ N − 2s
2λ

∫
S+

λ

y1−2s|Zα,k,n,i(z/|z|)|2 dz
) 1

2

= kN,s,gλ
−1−γ+ε

√
H(λ)

(∫
B+

1

y1−2s|∇V λ|2 dz −
∫

B+
1

y1−2s α

|x|2k
|V λ|2 dz + N − 2s

2

) 1
2

×
(∫

B+
1

y1−2s|∇Zα,k,n,i(z/|z|)|2 dz −
∫

B+
1

y1−2s α

|x|2k
|Zα,k,n,i(z/|z|)|2 dz + N − 2s

2

) 1
2

≤ const λ−1+ε

for any λ ∈ (0, r0], by Holder inequality, a change of variables, (5.3), (5.40), (5.79), (5.82),
(5.83), (5.101). Hence

|Υn0,i(λ)| ≤ const λN−2s+γ+ε for any λ ∈ (0, r0]. (5.109)

Now we show that for any r ∈ (0, r0]

C(r) +
∫ r

0
λ−1+γΥn0,i(λ)dλ = 0. (5.110)

From (5.109) it is clear that
∫ r0

0 λ−1+γΥn0,i(λ)dλ < +∞. We argue by contradiction. Since
σn0 = γ > −N−2s

2 by (5.102) and (5.106), then from (5.108) we deduce that

φn0,i(λ) ∼ γλ−N+2s−γ

N − 2s+ 2γ

(
C(r) +

∫ r

λ
t−1+γΥn0,i(t) dt

)
as λ → 0+

and so by (5.102) ∫ r0

0
λN−1−2s|φn0,i(λ)|2 dλ = +∞. (5.111)

On the other hand by Hölder inequality, a change of variables, (5.100) and [60, Lemma 2.4]∫ r0

0
λN−1−2s|φn0,i(λ)|2 dλ ≤

∫ r0

0
λN−1−2s

(∫
S+
θ1−2s

N+1 |U(λθ)|2 dS
)
dλ

=
∫

B+
r0

y1−2s U
2

|z|2
dz < +∞,
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which contradicts (5.111). It follows that

λ−N+2s−γ

∣∣∣∣C(r) +
∫ r

λ
λ−1+γΥn0,i(λ)dλ

∣∣∣∣ = λ−N+2s−γ

∣∣∣∣∣
∫ λ

0
λ−1+γΥn0,i(λ)dλ

∣∣∣∣∣
= O(λγ+ε), (5.112)

in view of (5.109). In conclusion (5.103) follows from (5.108), (5.110), and (5.112).

Proposition 5.5.7. Let U be a non-trivial solution of (5.19) and γ be as in (5.77). Then

lim
r→0+

r−2γH(r) > 0.

Proof. From (5.100), since {Zα,k,n}n∈N\{0} is a orthonormal basis of L2(S+, θ1−2s
N+1 ), see Sub-

section 5.2.1, we have that

H(λ) =
∫
S+
θ1−2s

N+1 |U(λθ)|2 dS =
∞∑

n=1

Mα,k,n∑
i=1

|φn,i(λ)|2 (5.113)

by (5.66) and a change of variables. We argue by contradiction supposing that

lim
λ→0+

λ−2γH(λ) = 0.

Let n0 be as in (5.102). By (5.113) for any i ∈ {1, . . . ,Mα,k,n0},

lim
λ→0+

λ−2γ |φn0,i(λ)|2 = 0.

By (5.103), for any i ∈ {1, . . . ,Mα,k,n0} and any r ∈ (0, r0]

φn,i(r)
rγ

+ γr−N+2s−2γ

N − 2s+ 2γ

∫ r

0
ρ−1+ρΥn0,i(ρ)dρ

+ N − 2s+ γ

N − 2s+ 2γ

∫ r

0
ρ−N−1+2s−γΥn,i(ρ) dρ = 0. (5.114)

Hence by (5.103), (5.109) and (5.114)

φn,i(λ) = −λγ N − 2s+ γ

N − 2s+ 2γ

∫ λ

0
ρ−N−1+2s−γΥn,i(ρ) dρ+O(λγ+ε) = O(λγ+ε)

as λ → 0+ for any i ∈ {1, . . . ,Mα,k,n0}. In view of (5.66) and (5.82), it follows that√
H(λ)

∫
S+
θ1−2s

N+1V
λZ dS = O(λγ+ε) as λ → 0+,

for any Z ∈ Vn0 , see (5.34). Then, in view of (5.80) with σ = ε
2 ,∫

S+
θ1−2s

N+1V
λZ dS = O(λ

ε
2 ) as λ → 0+ (5.115)

for any Z ∈ Vn0 . On the other hand by Proposition 5.5.5 and Proposition 3.4, there exist
Z0 ∈ Vn0 with ∥Z0∥L2(S+,θ1−2s

N+1 ) = 1 and a sequence λq → 0+ as q → ∞ such that

V λq → Z0 strongly in L2(S+, θ1−2s
N+1 ) as q → ∞. (5.116)

Since Z0 ∈ Vn0 , from the Parseval identity, (5.115), and (5.116) we deduce that Z0 ≡ 0 which
contradicts the fact that ∥Z0∥L2(S+,θ1−2s

N+1 ) = 1.
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We are now in position to state and prove our main results which are a more precise
version of Theorem 5.1.9 and Theorem 5.1.10 respectively.

Theorem 5.5.8. Let U be a solution of (5.19) and suppose that g satisfies (5.3). Then there
exists n ∈ N \ {0} such that

γ = lim
r→0+

N (r) = −N − 2s
2 +

√(
N − 2s

2

)2
+ γα,k,n. (5.117)

Furthermore let Mα,k,n and {Zα,k,n,i}i∈{1,....Mα,k,n} be as in (5.35) and (5.36) respectively.
Then for any i ∈ {0, . . . .Mα,k,n} there exists βi ∈ R such that (β1, . . . , βMα,k,n

) ̸= (0, . . . , 0)
and

U(λz)
λγ

→ |z|γ
Mα,k,n∑

i=1
βiZα,k,n,i(z/|z|) strongly in H1(B+

1 , y
1−2s) as λ → 0+, (5.118)

where

βi := φn,i(r)
rγ

+ γr−N+2s−2γ

N − 2s+ 2γ

∫ r

0
ρ−1+ρΥn,i(ρ)dρ

+ N − 2s+ γ

N − 2s+ 2γ

∫ r

0
ρ−N−1+2s−γΥn,i(ρ) dρ for any r ∈ (0, r0], (5.119)

with φn,i and Υn,i given by (5.100) and (5.101) respectively.

Proof. In view of (5.77) and Proposition 5.5.5 we know that (5.117) holds for some n ∈ N\{0}.
Furthermore for any sequence of strictly positive numbers λp → 0+ as p → ∞ there exist a
subsequence λpq → 0+ as q → ∞ and real numbers β1, . . . , βMα,k,n

such that

U(λz)
λγ

→ |z|γ
Mα,k,n∑

i=1
βiZα,k,n,i(z/|z|) strongly in H1(B+

1 , y
1−2s) as q → ∞+, (5.120)

taking into account Proposition 5.5.5 and (5.36). We claim that for any i ∈ {1, . . . ,Mα,k,n}
the number βi does not depend neither on the sequence λp → 0+ nor on its subsequence
λpq → 0+. In view of (5.36), (5.100), (5.120) and Proposition 3.4

lim
q→∞

λ−γ
pq
φn,j(λpq ) = lim

q→∞

∫
S+
θ1−2s

N+1λ
−γ
pq
U(λpqθ)Zα,k,n,j(θ) dS

=
Mα,k,n∑

i=1
βi

∫
S+
θ1−2s

N+1Zα,k,n,iZα,k,n,j dS = βj ,

for any j ∈ {1, . . . ,Mα,k,n}. On the other hand for any r ∈ (0, r0]

lim
q→∞

λ−γ
pq
φn,j(λpq ) = φn,j(r)

rγ
+ γr−N+2s−2γ

N − 2s+ 2γ

∫ r

0
ρ−1+ρΥn,j(ρ)dρ

+ N − 2s+ γ

N − 2s+ 2γ

∫ r

0
ρ−N−1+2s−γΥn,j(ρ) dρ
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by (5.103). Hence

βj = φn,j(r)
rγ

+ γr−N+2s−2γ

N − 2s+ 2γ

∫ r

0
ρ−1+ρΥn,j(ρ)dρ

+ N − 2s+ γ

N − 2s+ 2γ

∫ r

0
ρ−N−1+2s−γΥn,j(ρ) dρ (5.121)

for any j ∈ {1, . . . ,Mα,k,n} and in particular βj does not depend neither on the sequence
λp → 0+ nor on its subsequence λpq → 0+. Then by (5.121) and the Urysohn Subsequence
Principle we conclude that (5.118) holds, thus completing the proof.

From Theorem 5.5.8, Proposition 5.1.6 and Section 3.1 in Chapter 3 we can easily deduce
the following theorem.

Theorem 5.5.9. Let u be a solution of (5.12) and suppose that g satisfies (5.3). Let γ,
n ∈ N \ {0}, Mα,k,n and {Zα,k,n,i}i∈{1,....Mα,k,n} be as in Theorem 5.5.8. Then

u(λx)
λγ

→ |x|γ
Mα,k,n∑

i=1
βi Tr(Zα,k,n,i((·/| · |))(x) strongly in Hs(B′

1) as λ → 0+,

where βi is as in (5.119) for any i ∈ {1, · · · ,Mα,k,n}.

Proof of Corollary 5.1.11 and Corollary 5.1.12. We start by proving Corollary 5.1.11.
Let U be a solution of (5.19) such that (5.24) holds and assume by contradiction that U ̸≡ 0
on Ω× (0,∞). Let γ be as in Theorem 5.5.8. Then there exists a sequence λq → 0+ such that

lim
q→∞

λ−γ
q U(λqz) = 0 for a.e z ∈ B+

1 .

On the other hand by Theorem 5.1.9 there exists an eigenfunction Z of (5.20) such that

lim
q→∞

λ−γ
q U(λqz) = |z|γZ(z/|z|) for a.e. z ∈ B+

1 ,

up to a further subsequence, which is a contradiction. Arguing in the same way, we can
deduce Corollary 5.1.12 from Theorem 5.1.10, taking into account Remark 5.2.4.

5.6 Computation of the first eigenvalue on a hemisphere
Proposition 5.6.1. Equation (5.22) holds for any k ∈ {3, . . . , N}. If k = N then (5.23)
holds.

Proof. Let Yα,k,1 be the first eigenfunction of (5.5) defined in Section 5.1. In particular
Yα,k,1 is positive. By [64, Theorem 1.1] there exists an eigenfunction Ψ of problem (5.21),
corresponding to the first eigenvalue ηα,k,1, such that

λ
N−2

2 −
√

( N−2
2 )2+ηα,k,1

Yα,k,1(λx) → |x|−
N−2

2 +
√

( N−2
2 )2+ηα,k,1Ψ

(
x

|x|

)
(5.122)

strongly in H1(B′
1) as λ → 0+, since Yα,k,1 is positive. Furthermore for any ϕ ∈ C∞

c (Ω)

(Hs
α,k

(Ω))∗

〈
Ls

α,kYα,k,1, ϕ
〉
Hs

α,k
(Ω)

= (Yα,k,1, ϕ)Hs
α,k

(Ω) = µs
α,k,1

∫
Ω
Yα,k,1ϕdx,
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in view of (5.8), that is Yα,k,1 is weak solution of Ls
α,kYα,k,1 = µs

α,k,1Yα,k,1 in the sense given
by (5.12). Let U be the extension of Yα,k,1 provided by Theorem 5.1.7. Since Yα,k,1 is positive
then |U | is the only solution to the minimization problem (5.17) and so we conclude that U
is positive. Then, in view of by Theorem 5.5.8 and Theorem 5.5.9,

λ
N−2s

2 −
√

( N−2s
2 )2+γα,k,1

Yα,k,1(λx)

→ |x|−
N−2s

2 +
√

( N−2s
2 )2+γα,k,1

β1 Tr(Zα,k,1((·/| · |))(x) (5.123)

strongly in Hs(B′
1) as λ → 0+. Putting together (5.122) and (5.123) we obtain

−N − 2s
2 +

√(
N − 2s

2

)2
+ γα,k,1 = −N − 2

2 +

√(
N − 2

2

)2
+ ηα,k,1

thus (5.22) follows from a direct computation. Finally, if k = N , problem (5.21) reduces to

−∆S′Ψ − αΨ = ηΨ in S′

which admits −α as first eigenvalue, hence we have proved (5.23) in view of (5.22).

5.7 A proof of Proposition 5.1.2
In this section we provide, for the sake of completeness, a detailed proof of Proposition 5.1.2
starting with a preliminary lemma. Let us consider, for any positive sequence {qn}n∈N, the
weighted ℓ2(N)-space defined as

ℓ2(N, {qn}) :=
{

{an}n∈N :
∞∑

n=0
qna

2
n < +∞

}

endowed with the norm

∥{an}∥ℓ2(N,{qn}) :=
( ∞∑

n=0
qna

2
n

) 1
2

.

Lemma 5.7.1. Let ℓ2(N, {qn}) and ℓ2(N, {pn}) be weighted ℓ2(N)-spaces. Then

(ℓ2(N, {qn}), ℓ2(N, {pn}))s,2 = ℓ2(N, {q1−s
n ps

n}). (5.124)

with equivalent norms.

Proof. We follow the proof of [128, Lemma 23.1]. Let us consider a variant of the standard
K function defined as

K2(t, a) := inf
b+c=a

{(
∥b∥2

ℓ2(N,{qn}) + t2 ∥c∥2
ℓ2(N,{pn})

) 1
2 : b ∈ ℓ2(N, {qn}), c ∈ ℓ2(N, {pn})

}
,

for any t ≥ 0 and any sequence a ∈ ℓ2(N, {qn}) + ℓ2(N, {pn}). If K(t, a) is the standard
K-function it is clear that K2(t, a) ≤ K(t, a) ≤

√
2K2(t, a) for any t ≥ 0 and any se-

quence a ∈ ℓ2(N, {qn}) + ℓ2(N, {pn}). It follows that we can use K2 to define a norm on
(ℓ2(N, {qn}), ℓ2(N, {pn}))s,2 equivalent to the standard one.
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We can compute K2(a, t) explicitly. Indeed, fixed a ∈ ℓ2(N, {qn}) + ℓ2(N, {pn}) and t ≥ 0,
we can, for any n ∈ N, minimize the value of b2

nqn + t2(an −bn)2pn as a function of bn choosing

bn := t2pn

qn + t2pn
an.

With this optimal choice it follows that

cn = an − bn = qn

qn + t2pn
an

and so we obtain
K2(t, a)2 =

∞∑
n=0

t2pnqn

qn + t2pn
a2

n.

Then by the Monotone Convergence Theorem and the change of variables t = τ
√

qn

pn∫ ∞

0
K2(t, a)2t−1−2s dt =

∞∑
n=0

a2
n

∫ ∞

0

y1−2spnqn

qn + t2pn
dt =

(∫ ∞

0

τ1−2s

1 + τ2 dτ

) ∞∑
n=0

a2
nq

1−s
n ps

n.

Since for any s ∈ (0, 1) ∫ ∞

0

τ1−2s

1 + τ2 dτ < +∞,

we conclude that (5.124) holds.

Proof of Proposition 5.1.2. Let us start by proving that for any k ∈ {3, . . . , N} and α as
in (5.2)

H1
α,k(Ω) :=

{
v ∈ L2(Ω) :

∞∑
n=1

µα,k,nv
2
n < +∞

}
= H1

0 (Ω), (5.125)

with equivalent norms. If u ∈ H1
0 (Ω) then, in view of Remark 5.1.1,

u =
∞∑

n=1

(
u,

Yα,k,n√
µα,k,n

)
α,k

Yα,k,n√
µα,k,n

and so by the Parseval’s identity, (5.6), (5.7) and Remark 5.1.1

+∞ > ∥u∥2
α,k =

∞∑
n=1

µα,k,nu
2
n. (5.126)

On the other hand if u ∈ H1
α,k(Ω) let, in view of (5.6),

u(j) :=
j∑

n=1

(
u,

Yα,k,n√
µα,k,n

)
α,k

Yα,k,n√
µα,k,n

=
j∑

n=1
unYα,k,n.

For any j ∈ N \ {0} it is clear that u(j) ∈ H1
0 (Ω) and if j > i

∥∥∥u(j) − u(i)
∥∥∥2

α,k
=

j∑
n=i

µα,k,nu
2
n. (5.127)
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It follows that {u(j)}j∈N\{0} converges to u in H1
0 (Ω) by Remark 5.1.1, and (5.127). In

conclusion u ∈ H1
0 (Ω). From Remark 5.1.1 and (5.126) we deduce that the norms on H1

0 (Ω)
and H1

α,k(Ω) are equivalent.
For any s ∈ (0, 1], since L2(Ω) and Hs

α,k(Ω) are isomorphic to ℓ2(N) and ℓ2(N, {µs
α,k,n})

respectively, from Lemma 5.7.1 and (5.125) it follows that

Hs
α,k(Ω) = (L2(Ω),H1

α,k(Ω))s,2 = (L2(Ω), H1
0 (Ω))s,2 =

{
Hs

0(Ω), if s ∈ (0, 1) \ {1
2},

H
1/2
00 (Ω), if s = 1

2 ,

with equivalent norms. The last equality is a classical interpolation result, see for example
[101].
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Part II

Unique continuation for parabolic
problems
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Chapter 6

Unique continuation for the
fractional power of the heat
operator

6.1 Statement of the main results
In this Chapter we deal with the singular fractional evolution equation

(wt − ∆w)s = 1
κs

(
µ

|x|2s
w + gw

)
, in RN × (t0 − T, t0), (6.1)

where T > 0, and

s ∈ (0, 1), N > 2s, µ < κsΛN,s, κs := Γ(1 − s)
22s−1Γ(s) , ΛN,s := 22s

Γ2
(

N+2s
4

)
Γ2
(

N−2s
4

) . (6.2)

We are interested in studying the asymptotic behaviour of solutions to (6.1) at (x, t) = (0, t0)
along the directions (λx, t0 − λ2t) as λ → 0+. On the perturbing potential g we assume the
following hypotheses:

g, gt ∈ Lr((t0 − T, t0), L
N
2s (RN )), gt ∈ L∞

loc((t0 − T, t0), L
N
2s (RN )), (6.3)

|g(x, t)| + |∇g(x, t) · x| ≤ Cg(1 + |x|−2s+ε) for all t ∈ (t0 − T, t0) and a.e. x ∈ RN , (6.4)

for some constant Cg > 0, ε ∈ (0, 2s) and r > 1.
To formally introduce the fractional heat operator, let us first set some notations. For

any real Hilbert space X we denote with X∗ its dual space and with X∗⟨·, ·⟩X the duality
between X∗ and X; (·, ·)X denotes the scalar product in X.

The operator Hs can be defined by means of the Fourier transform as follows: for any
function w ∈ S(RN+1),

Ĥs(w)(ξ, θ) := (iθ + |ξ|2)sŵ(ξ, θ),

where the Fourier transform of w is defined as

F(w)(ξ, θ) = ŵ(ξ, θ) := 1
(2π)

N+1
2

∫
RN+1

e−i(x·ξ+tθ)w(x, t) dx dt.
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Furthermore, we can extend Hs to its natural domain; more precisely, we can define Hs on

Dom(Hs) :=
{
w ∈ L2(RN+1) :

∫
RN+1

|iθ + |ξ|2|s|ŵ(ξ, θ)|2 dξ dθ < +∞
}
,

endowed with the norm

∥w∥Dom(Hs) :=
(∫

RN+1
w2(x, t) dx dt+

∫
RN+1

|iθ + |ξ|2|s|ŵ(ξ, θ)|2dξ dθ
) 1

2
,

as the map from Dom(Hs) into its dual space (Dom(Hs))∗, defined as

(Dom(Hs))∗⟨Hs(w), v⟩Dom(Hs) :=
∫
RN+1

(iθ + |ξ|2)sŵ(ξ, θ)v̂(ξ, θ)dξdη, (6.5)

for any w, v ∈ Dom(Hs).
It is worth noticing that, since |ξ|2s ≤ |iθ + |ξ|2|s for any (θ, ξ) ∈ RN+1,

∥v∥L2(R,W s,2(RN )) ≤ ∥v∥Dom(Hs)

for any v ∈ Dom(Hs). Hence the natural embedding

Dom(Hs) ↪→ L2(R,W s,2(RN )) (6.6)

is linear and continuous. In this Chapter we will denote with W s,2(RN ) the usual fractional
Sobolev space Hs(RN ) to avoid any confusions with the fractional power of the heat operator
H. Furthermore, since we are dealing with a Hardy-type potential, the weighted L2-space

L2(RN , |x|−2s) :=
{
v : RN → R measurable:

∫
RN

v2

|x|2s
dx < +∞

}
will play a role in our analysis, together with the following Hardy-type inequality due to
Herbst [86]: ∫

RN
|ξ|2s|ϕ̂|2 dξ ≥ ΛN,s

∫
RN

|x|−2sϕ2 dx (6.7)

for all ϕ ∈ C∞
0 (RN ), where ΛN,s > 0, defined in (6.2), is optimal and not attained.

In view of (6.5), we define a weak solution of (6.1) as a function w ∈ Dom(Hs) such that

(Dom(Hs))∗⟨Hs(w), ϕ⟩Dom(Hs) = 1
κs

∫ t0

t0−T

(∫
RN

(
µ

|x|2s
wϕ+ gwϕ

)
dx

)
dt, (6.8)

for any ϕ ∈ C∞
c (RN × (t0 − T, t0)). In view of (6.4), (6.6), (6.7), and the Hölder inequality,

the above definition of weak solution is well-posed, that is the right hand side, as a function
of ϕ, belongs to (Dom(Hs))∗.

In order to develop an Almgren-Poon type monotonicity formula, we apply the extension
procedure of [24] (see also [21, 110, 125]) to localize the problem.

We use the symbols ∇ and div to denote the gradient, respectively the divergence, with
respect to the space variable z = (x, y).

We also note that by [101] there exists a linear and continuous trace operator

Tr : H1(RN+1
+ , y1−2s) → W 2,s(RN ), (6.9)

see also Section 3.1 in Chapter 3.
The following theorem is a particular case of a very general extension result proved in

[24]. See also [110, Theorem ], [125, Theorem 1.7] and [21, Section 3, Section 4].
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Theorem 6.1.1. [24, Theorem 4.1, Remark 4.3] If w ∈ Dom(Hs), then there exists a function
W ∈ L2(R, H1(RN+1

+ , y1−2s)) that weakly solves
y1−2sWt − div(y1−2s∇W ) = 0, in RN+1

+ × R,
Tr(W (·, t)) = w(·, t), on RN , for a.e. t ∈ R,
− lim

y→0+
y1−2s ∂W

∂y = κsH
s(w), on RN × R,

in the sense that

∫
R

(∫
RN+1

+

y1−2sWϕt dz

)
dt

=
∫
R

(∫
RN+1

+

y1−2s∇W · ∇ϕdz
)
dt− κs (Dom(Hs))∗⟨Hs(w), ϕ(·, 0, ·)⟩Dom(Hs)

for any ϕ ∈ C∞
c (RN+1

+ × R).

The following corollary is an easy consequence of Theorem 6.1.1 and (6.8).

Corollary 6.1.2. If w ∈ Dom(Hs) is a solution of (6.8), then there exists a function W ∈
L2(R, H1(RN+1

+ , y1−2s)) that weakly solves
y1−2sWt − div(y1−2s∇W ) = 0, in RN+1

+ × (t0 − T, t0),
Tr(W (·, t)) = w(·, t), on RN , for a.e. t ∈ (t0 − T, t0),
− lim

y→0+
y1−2s ∂W

∂y = µ
|x|2sw + gw, on RN × (t0 − T, t0),

(6.10)

in the sense that

∫ t0

t0−T

(∫
RN+1

+

y1−2sWϕt dz

)
dt

=
∫ t0

t0−T

(∫
RN+1

+

y1−2s∇W · ∇ϕdz
)
dt−

∫ t0

t0−T

(∫
RN

(
µ

|x|2s
wϕ+ gwϕ

)
dx

)
dt, (6.11)

for any ϕ ∈ C∞
c (RN+1

+ × (t0 − T, t0)).

The asymptotic behavior at (0, t0) of a solution W of (6.10), and consequently of a solution
w of (6.8), will turn out to be related to the following eigenvalue problem for a weighted
Ornstein-Uhlenbeck operator:− div(y1−2s∇Y ) + y1−2s z

2 · ∇Y = γy1−2sY, in RN+1
+ ,

− lim
y→0+

y1−2s ∂Y
∂y = µ

|x|2s Tr(Y ), on RN ,
(6.12)

with µ < κsΛN,s, see (6.2) for the definition of κs and ΛN,s. To introduce a suitable functional
setting for problem (6.12), we define

Gs(z, t) := t−
N+2−2s

2 e− |z|2
4t for any (z, t) ∈ RN+1

+ × (0,∞).
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It is easy to verify that Gs ∈ C∞(RN+1
+ × (0,∞)) solves the problemy

1−2s ∂Gs
∂t − div(y1−2s∇Gs) = 0, in RN+1

+ × (0,∞),
lim

y→0+
y1−2s ∂Gs

∂y = 0, on RN × (0,∞),

in a classical sense. Furthermore

∇Gs(z, t) = − z

2tGs(z, t) for any (z, t) ∈ RN+1
+ × (0,∞). (6.13)

Letting
G(z) := Gs(z, 1) = e− |z|2

4 , for any z ∈ RN+1,

we define
L :=

{
V : RN+1

+ → R measurable :
∫
RN+1

+

y1−2sV 2Gdz < +∞
}

and H as the completion of C∞
c (RN+1

+ ) with respect to the norm

∥ϕ∥H :=
(∫

RN+1
+

y1−2s(ϕ2 + |∇ϕ|2)Gdz
) 1

2

.

It is clear that both L and H are Hilbert spaces with respect to the natural scalar product
associated to the ∥ · ∥L-norm and the ∥ · ∥H-norm respectively. We observe that

∥W∥H ≤ ∥W∥H1(RN+1
+ ,y1−2s) for any W ∈ H1(RN+1

+ , y1−2s),

hence the embedding
H1(RN+1

+ , y1−2s) ↪→ H

is linear and continuous. Furthermore, we consider the weighted L2-spaces

L2(RN , G(x, 0)) :=
{
v : RN → R measurable :

∫
RN

v2(x)G(x, 0) dx < +∞
}

and

L2(RN , |x|−2sG(x, 0)) :=
{
v : RN → R measurable :

∫
RN

v2(x)
|x|2s

G(x, 0) dx < +∞
}
.

The trace operator Tr introduced in (6.9) can be extended to a continuous linear trace op-
erator, still denoted as Tr, from H to L2(RN , G(x, 0)), see Proposition 6.2.3 in Section 6.2.
Furthermore Tr takes values in L2(RN , |x|−2sG(x, 0)) and

Tr : H → L2(RN , |x|−2sG(x, 0)),

is linear and continuous, see Proposition 6.2.5 in Section 6.2.
We say that γ is an eigenvalue of problem (6.12) if there exists an eigenfunction Y ∈ H\{0}

weakly satisfying (6.12), i.e.∫
RN+1

+

y1−2s∇Y · ∇V Gdz−
∫
RN

µ

|x|2s
Tr(Y ) Tr(V )G(0, ·) dx = γ

∫
RN+1

+

y1−2sY V Gdz (6.14)
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for any V ∈ H. Proposition 6.2.5 in Section 6.2 ensures that the above definition of weak
solution is well posed.

In order to compute the eigenvalues of (6.12) we separate the variable z in radial and
angular parts. Henceforward we denote

SN−1 := {x ∈ RN : |x| = 1}, SN
+ := {z ∈ RN+1

+ : |z| = 1},

identifying ∂SN
+ with SN−1. Writing as θ = (θ1, . . . , θN+1) the coordinates on SN , we define

L2(SN
+ , θ

1−2s
N+1 ) :=

{
v : SN

+ → R measurable :
∫
SN

+

θ1−2s
N+1 |v|2 dz < +∞

}

and H1(SN
+ , θ

1−2s
N+1 ) as the completion of C∞

c (SN
+ ) with respect to the norm

∥ϕ∥H1(SN
+ ,θ1−2s

N+1 ) :=
(∫

SN
+

θ1−2s
N+1 (|ϕ|2 + |∇SNϕ|2) dS

) 1
2

,

where ∇SN and dS denote the Riemannian gradient and the volume element, respectively,
with respect to the standard metric on the unit N -dimensional sphere SN .

We refer to [60] for the following proposition.

Proposition 6.1.3. [60, Lemma 2.2] There exists a linear and continuous trace operator

T : H1(SN
+ , θ

1−2s
N+1 ) → L2(SN−1) = L2(∂SN

+ ).

Furthermore, letting κs and ΛN,s be as in (6.2),

κsΛN,s

∫
SN−1

|T (V )|2dS′ ≤
(
N − 2s

2

)2 ∫
SN

+

θ1−2s
N+1 |V |2dS +

∫
SN

+

θ1−2s
N+1 |∇SNV |2dS (6.15)

for any v ∈ H1(SN , θ1−2s
N+1 ), where dS′ denotes the volume element on SN−1.

Let us consider the following eigenvalue problem− divSN (θ1−2s
N+1 ∇SNψ) = νθ1−2s

N+1ψ, in SN
+ ,

− lim
θN+1→0+

θ1−2s
N+1 ∇SNψ · eN+1 = µT (ψ), on SN−1,

(6.16)

where eN+1 := (0, . . . , 1) ∈ RN+1 and µ < κsΛN,s as in (6.2). We say that ν ∈ R is an
eigenvalue of (6.16) if there exists ψ ∈ H1(SN

+ , θ
1−2s
N+1 ) \ {0}, called eigenfunction, such that∫

SN
+

θ1−2s
N+1 ∇SNψ · ∇SNV dS − µ

∫
SN−1

T (ψ)T (V ) dS′ = ν

∫
SN

+

θ1−2s
N+1ψV dS

for any V ∈ H1(SN
+ , θ

1−2s
N+1 ). Since the natural embedding H1(SN

+ , θ
1−2s
N+1 ) ↪→ L2(SN

+ , θ
1−2s
N+1 ) is

compact, see [58] and [111], by classical spectral theory the eigenvalues of (6.16) are a non-
decreasing and diverging sequence {νk(µ)}k∈N\{0}. In the sequence {νk(µ)}k∈N\{0} we repeat
each eigenvalue as many times as the dimension of the associated eigenspace. Inequality
(6.15) implies the following estimate on the first eigenvalue:

ν1(µ) > −
(
N − 2s

2

)2
. (6.17)

Furthermore there exists an orthonormal basis {ψk}k∈N\{0} of L2(SN
+ , θ

1−2s
N+1 ) such that, for

any k ∈ N \ {0}, the function ψk is an eigenfunction of problem (6.16) associated to νk(µ).
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Remark 6.1.4. If µ = 0, then a combination of the regularity result of [120, Theorem 1.1]
with the blow-up analysis done in [60] for the Caffarelli-Silvestre extended problem implies
that the set of eigenvalues of (6.16) is {k2 + k(N − 2s) : k ∈ N}.

Let, for any n ∈ N and j ∈ N \ {0},

Yn,j(z) := |z|−αjPj,n

(
|z|2

4

)
ψj

(
z

|z|

)
(6.18)

where

αj := N − 2s
2 −

√(
N − 2s

2

)2
+ νj(µ), (6.19)

Pj,n(t) :=
n∑

i=0

(−n)i(
N+2−2s

2 − αj

)
i

ti

i! , with
{

(s)i =
∏i−1

j=0(s+ j),
(s)0 = 1.

(6.20)

Let us also consider the L-normalized functions

Ỹn,j := Yn,j

∥Yn,j∥L
for any (n, j) ∈ N × N \ {0}. (6.21)

The following result is proved in Section 6.4 and provides a complete description of the
spectrum of problem (6.12).
Proposition 6.1.5. The set of eigenvalues of problem (6.12) is{

γm,k := m− αk

2 : k ∈ N \ {0},m ∈ N
}
, (6.22)

where {νk(µ)}k∈N\{0} are the eigenvalues of problem (6.16) and αk is defined in (6.19). The
multiplicity of each eigenvalue γm,k is finite and equal to

#
{
j ∈ N \ {0} : γm,k + αj

2 ∈ N
}
.

Furthermore, for any (m, k) ∈ N × N \ {0},

Em,k =
{
Ỹn,j : (n, j) ∈ N × N \ {0} and γm,k = n− αj

2

}
is an L-orthonormal basis of the eigenspace associated to the eigenvalue γm,k, where Ỹn,j has
been defined in (6.21). Finally ⋃

(m,k)∈N×N\{0}
Em,k (6.23)

is a orthonormal basis of L.
The main result of this Chapter is the following classification of the asymptotic behaviour

near (0, t0) of any solution W of (6.10), based on the limit as t → t−0 of the following Almgren-
Poon type frequency function

N (t) :=
(t0 − t)

∫
RN+1

+
y1−2s|∇W |2Gs(z, t0 − t) dz∫

RN+1
+

y1−2sW 2Gs(·, t0 − t) dz

−
(t0 − t)

∫
RN

(
µ

|x|2sw
2 + gw2

)
Gs(x, 0, t0 − t) dx∫

RN+1
+

y1−2sW 2Gs(·, t0 − t) dz . (6.24)
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Theorem 6.1.6. Let W ̸≡ 0 be a weak solution to (6.10). Then there exist m0 ∈ N and
k0 ∈ N \ {0} such that

lim
t→t−

0

N (t) = γm0,k0 , (6.25)

where N has been defined in (6.24) and γm0,k0 in (6.22). Furthermore, letting

J0 :=
{

(m, k) ∈ N × N \ {0} : γm0,k0 = m− αk

2

}
, (6.26)

for any τ ∈ (0, 1)

lim
λ→0+

∫ 1

τ

∥∥∥∥∥∥λ−2γm0,k0W (λz
√
t, t0 − λ2t) − tγm0,k0

∑
(m,k)∈J0

βm,kỸm,k(z)

∥∥∥∥∥∥
2

H

dt = 0

and

lim
λ→0+

sup
t∈[τ,1]

∥∥∥∥∥∥λ−2γm0,k0W (λz
√
t, t0 − λ2t) − tγm0,k0

∑
(m,k)∈J0

βm,kỸm,k(z)

∥∥∥∥∥∥
2

L

= 0

where Ỹm,k has been defined in (6.21),

βm,k = Λ−2γm0,k0

∫
RN+1

+

y1−2sW (Λz, t0 − Λ2)Ỹm,k(z)G(z) dz + 2

×
∫ Λ

0
τ2s−1−2γm0,k0

(∫
RN

g(τx, t0 − τ2) Tr(W )(τx, t0 − τ2) Tr(Ỹm,k)(x)e− |x|2
4 dx

)
dτ, (6.27)

for any Λ ∈ (0,Λ0) and for some Λ0 ∈ (0,
√
T ), and Tr has been defined in (6.9). Finally

βm,k ̸= 0 for some (m, k) ∈ J0.

From Theorem 6.1.6 and the relationship between problems (6.8) and (6.10) given by
Corollary 6.1.2 we can easily deduce a similar result for solutions to (6.8).

Theorem 6.1.7. Let w ̸≡ 0 be a solution to (6.8). Then there exist m0 ∈ N and k0 ∈ N \ {0}
such that, for any τ ∈ (0, 1),

lim
λ→0+

∫ 1

τ

∥∥∥∥∥∥λ−2γm0,k0w(λx
√
t, t0 − λ2t) − tγm0,k0

∑
(m,k)∈J0

βm,k Tr(Ỹm,k)(x)

∥∥∥∥∥∥
2

L2(RN ,G(·,0))

dt = 0,

where Ỹm,k, βm,k, and Tr are defined in (6.21), (6.27), and (6.9), respectively.

Thanks to Theorem 6.1.6 and Theorem 6.1.7, we can prove that a strong unique continu-
ation principle holds for solutions of equations (6.8) and (6.11).

Corollary 6.1.8. Let W be a weak solution of problem (6.10) such that

W (z, t) = O
(
(|z|2 + (t0 − t))k

)
as z → 0 and t → t−0 for all k ∈ N. (6.28)

Then W ≡ 0 on RN+1
+ × (t0 − T, t0).

142



Corollary 6.1.9. Let w be a solution of (6.8) such that

w(x, t) = O
(
(|x|2 + (t0 − t))k

)
as x → 0 and t → t−0 for all k ∈ N.

Then w ≡ 0 in RN × (t0 − T, t0).

The next theorem is a backward uniqueness result for the Cauchy problem associated with
(6.10). Its proof relies exclusively on the monotonicity argument developed in Section 6.5 and
does not require the blow-up argument which is instead needed to obtain the above space-like
unique continuation properties.

Theorem 6.1.10. If W is a solution of (6.10) and there exists t1 ∈ (t0 − T, t0) such that

W (z, t1) = 0 for a.e. z ∈ RN+1
+ ,

then W ≡ 0 in RN+1
+ × (t0 − T, t0).

This Chapter is organized as follows. In Section 6.2 we prove some functional inequalities
and trace results in Gaussian spaces. In Section 6.3 we give an alternative weak formulation
of the extended problem in Gaussian spaces and prove a regularity result. In Section 6.4
we describe the eigenvalues of a weighted Ornstein-Uhlenbeck operator which turn out to be
related to the classification of the asymptotic behaviour of weak solutions to (6.1) at (0, t0). In
Section 6.5 we derive an Almgren-Poon type monotonicity formula for the extended problem,
which is combined with a blow-up analysis in Section 6.6 to obtain our main results, i.e. the
asymptotic of solutions and the strong space-like unique continuation property.

6.2 Inequalities and Traces in Gaussian spaces
In this section we prove some inequalities and trace results for Gaussian spaces. We start
with a Hardy-type inequality.

Proposition 6.2.1. For any V ∈ H

∫
RN+1

+

y1−2s V
2

|z|2
Gdz + 1

4(N − 2s)2

∫
RN+1

+

y1−2s|z|2V 2Gdz

≤ 4
(N − 2s)2

∫
RN+1

+

y1−2s|∇V |2Gdz + N + 2 − 2s
(N − 2s)2

∫
RN+1

+

y1−2sV 2Gdz. (6.29)

Proof. By density, it is enough to prove (6.29) for any ϕ ∈ C∞
c (RN+1

+ ). Thanks to [60, Lemma
2.4]

∫
RN+1

+

y1−2s ϕ
2

|z|2
Gdz ≤ 4

(N − 2s)2

∫
RN+1

y1−2s

∣∣∣∣∇(
ϕe− |z|2

8

)∣∣∣∣2 dz
= 4

(N − 2s)2

∫
RN+1

y1−2s
(

|∇ϕ|2 − 1
4∇

(
ϕ2
)

· z + 1
16 |z|2ϕ2

)
e− |z|2

4 dz. (6.30)

Let, for any δ > 0,
RN+1

δ := {(x, y) ∈ RN+1 : y > δ}. (6.31)
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Since on RN+1
+

div(y1−2sϕ2e− |z|2
4 z) = y1−2s

[
(1 − 2s)ϕ2 + ∇

(
ϕ2
)

· z − 1
2 |z|2ϕ2 + (N + 1)ϕ2

]
e− |z|2

4 ,

then∫
RN+1

δ

y1−2s∇
(
ϕ2
)

· z e− |z|2
4 dz =

∫
RN+1

δ

y1−2s
[
(−N − 2 + 2s)ϕ2 + 1

2 |z|2ϕ2
]
e− |z|2

4 dz

− δ2−2s
∫
RN

ϕ2(x, δ)e− |x|2+δ2
4 dx.

Since (2 − 2s) > 0, we can pass to the limit as δ → 0+ and conclude that∫
RN+1

+

y1−2s∇
(
ϕ2
)

· z e− |z|2
4 dz =

∫
RN+1

+

y1−2s
[
(−N − 2 + 2s)ϕ2 + 1

2 |z|2ϕ2
]
e− |z|2

4 dz.

Then from (6.30) we deduce that

∫
RN+1

+

y1−2s ϕ
2

|z|2
Gdz

≤ 4
(N − 2s)2

∫
RN+1

y1−2s
(

|∇ϕ|2 + 1
16 |z|2ϕ2 + 1

4(N + 2 − 2s)ϕ2 − 1
8 |z|2ϕ2

)
e− |z|2

4 dz.

which proves (6.29).

Proposition 6.2.2. Let V ∈ H. Then V
√
G ∈ H1(RN+1

+ , y1−2s) and

∥∥∥∇ (
V

√
G
)∥∥∥2

L2(RN+1
+ ,y1−2s)

≤ (N + 2 − 2s)
2

∫
RN+1

+

y1−2sV 2Gdz + 4
∫
RN+1

+

y1−2s|∇V |2Gdz. (6.32)

Proof. If V ∈ H then, in view of (6.13),

|∇(V
√
G)|2 =

∣∣∣∣∇V√
G+ 1

2V G
− 1

2 ∇G
∣∣∣∣2 ≤ 2|∇V |2G+ 1

8V
2|z|2G

and so by Proposition 6.2.1 it is a clear that V
√
G ∈ H1(RN+1

+ , y1−2s) and (6.32) holds.

Proposition 6.2.3. The trace operator Tr introduced in (6.9) can be extended to a linear and
continuous trace operator, still denoted as Tr,

Tr : H → L2(RN , G(x, 0)).

In particular there exists a constant KN,s > 0, which depends only on N and s, such that, for
any V ∈ H,∫

RN
| Tr(V )|2G(·, 0) dx ≤ KN,s

(∫
RN+1

+

y1−2s|∇V |2Gdz +
∫
RN+1

+

y1−2sV 2Gdz

)
. (6.33)
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Proof. There exists a constant CN,s > 0, which depends only on N and s, such that, for any
ϕ ∈ C∞

c (RN+1
+ ),∫

RN
|ϕ(x, 0)|2 dx ≤ CN,s

(∫
RN+1

+

y1−2s|∇ϕ|2 dz +
∫
RN+1

+

y1−2sϕ2 dz

)
, (6.34)

see for example [101]. Testing (6.34) with ϕ
√
G ∈ C∞

c (RN+1
+ ), by Proposition 6.2.2 we

obtain (6.33) for any ϕ ∈ C∞
c (RN+1

+ ). Then the operator Tr is densely defined on H and
it is continuous. Hence it can be extended to a continuous trace operator on H satisfying
(6.33).

Proposition 6.2.4. Letting κs and ΛN,s be as in (6.2), for any function V ∈ H

κsΛN,s

∫
RN

| Tr(V )|2

|x|2s
G(·, 0) dx+ 1

16

∫
RN+1

+

y1−2s|z|2V 2Gdz

≤
∫
RN+1

+

y1−2s|∇V |2Gdz + N + 2 − 2s
4

∫
RN+1

+

y1−2sV 2Gdz. (6.35)

Proof. It is enough to prove (6.35) for any ϕ ∈ C∞
c (RN+1

+ ). Thanks to [60, Lemma 2.5], for
any ϕ ∈ C∞

c (RN+1
+ )∫

RN

ϕ(·, 0)2

|x|2s
Gdx ≤ κ−1

s Λ−1
N,s

∫
RN+1

+

y1−2s

∣∣∣∣∇(ϕe− |z|2
8
)∣∣∣∣2 dz.

Then we can follow the proof of Proposition 6.2.1 to conclude that (6.35) holds.

Proposition 6.2.4 directly implies the following trace result.

Proposition 6.2.5. Let Tr be the trace operator introduced in (6.9). Then

Tr(H) ⊆ L2(RN , |x|−2sG(x, 0))

and Tr : H → L2(RN , |x|−2sG(x, 0)) is a well defined, linear and continuous operator.

Proposition 6.2.6. For µ being as in (6.2), let us consider the quadratic form

B(V ) :=
∫
RN+1

+

y1−2s|∇V |2Gdz − µ

∫
RN

| Tr(V )|2

|x|2s
G(·, 0) dx,

for any V ∈ H. Then

inf
V ∈H\{0}

B(V ) + N+2−2s
4

∫
RN+1

+
y1−2sV 2Gdz∫

RN+1
+

y1−2s|∇V |2Gdz + N+2−2s
4

∫
RN+1

+
y1−2sV 2Gdz

> 0.

Proof. We argue by contradiction assuming that, for any ϵ ∈ (0, 1), there exists Vϵ ∈ H such
that ∫

RN+1
+

y1−2s|∇Vϵ|2Gdz − µ

∫
RN

| Tr(Vϵ)|2

|x|2s
Gdx+ N + 2 − 2s

4

∫
RN+1

+

y1−2sV 2
ϵ Gdz

< ϵ

(∫
RN+1

+

y1−2s|∇Vϵ|2Gdz + N + 2 − 2s
4

∫
RN+1

+

y1−2sV 2
ϵ Gdz

)
, (6.36)
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i.e.

− µ

1 − ϵ

∫
RN

| Tr(Vϵ)|2

|x|2s
Gdx < −

∫
RN+1

+

y1−2s|∇Vϵ|2Gdz − N + 2 − 2s
4

∫
RN+1

+

y1−2sV 2
ϵ Gdz.

Hence by (6.35) (
κsΛN,s − µ

1 − ϵ

)∫
RN

| Tr(Vϵ)|2

|x|2s
Gdx < 0.

By (6.2), we conclude that, choosing ϵ < 1 small enough, Tr(Vϵ) = 0 thus contradicting
(6.36).

Proposition 6.2.7. Let K > 0. Then there exist a constant CN,s,µ > 0 depending only on
N , s, µ and T̄ ∈ (0,min{T, 1}), depending only on N , s, K, µ, such that, for every T̃ ∈ (0, T̄ ]
and any measurable function f : RN × (0, T̃ ) → R satisfying

|f(x, t)| ≤ K
(
1 + |x|−2s+ε

)
for a.e. t ∈ (0, T̃ ) and a.e. x ∈ RN , (6.37)

the following inequality∫
RN+1

+

y1−2s|∇V |2Gdz −
∫
RN

(
µ

|x|2s
| Tr(V )|2 + tsf(

√
tx, t)| Tr(V )|2

)
G(·, 0) dx

+ N + 2 − 2s
4

∫
RN+1

+

y1−2sV 2Gdz

≥ CN,s,µ

(∫
RN+1

+

y1−2s|∇V |2Gdz +
∫
RN+1

+

y1−2sV 2Gdz

)
(6.38)

is satisfied for a.e. t ∈ (0, T̃ ) and for any V ∈ H. Furthermore, there exists a constant
C ′

N,s > 0, depending only on N, s, such that, for a.e. t ∈ (0, T̃ ) and any V ∈ H,∫
RN

ts|f(
√
tx, t)|| Tr(V )|2G(·, 0) dx

≤ K C ′
N,s(ts + t

ϵ
2 )
(∫

RN+1
+

y1−2s|∇V |2Gdz +
∫
RN+1

+

y1−2sV 2Gdz

)
. (6.39)

Proof. Thanks to (6.37), for any V ∈ C∞
c (RN+1

+ ) and a.e. t ∈ (0, T̃ ),∣∣∣∣ ∫
RN
f(

√
tx, t)|ϕ(x, 0)|2G(x, 0) dx

∣∣∣∣
≤ K

∫
RN

|ϕ(x, 0)|2G(x, 0) dx+Kt−s+ ε
2

∫
RN

|x|−2s+ε|ϕ(x, 0)|2G(x, 0) dx

≤ K

∫
RN

|ϕ(x, 0)|2G(x, 0) dx+Kt−s+ ε
2

∫
{|x|≥1}

|ϕ(x, 0)|2G(x, 0) dx

+Kt−s+ ε
2

∫
{|x|≤1}

|ϕ(x, 0)|2

|x|2s
G(x, 0) dx

≤ K

ts

(
ts + t

ε
2
) ∫

RN
|ϕ(x, 0)|2G(x, 0) dx+Kt−s+ ε

2

∫
RN

|ϕ(x, 0)|2

|x|2s
G(x, 0) dx.

Then, in view of (6.33), (6.35), a density argument implies (6.39). From Proposition 6.2.6
and (6.39), choosing T̄ small enough, we deduce (6.38).
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Proposition 6.2.8. There exists a constant C ′′
N,s > 0, depending only on N and s, such that,

for any ρ ∈ L
N
2s (RN ) and V ∈ H,∫

RN
|ρ|| Tr(V )|2G(·, 0) dx ≤ C ′′

N,s ∥ρ∥
L

N
2s (RN )

∥V ∥2
H . (6.40)

Proof. By Proposition 6.2.2 and (6.9), Tr(V )
√
G(·, 0) ∈ W s,2(RN ). Hence, thanks to the

Fractional Sobolev Embedding Theorem, Tr(V )
√
G(·, 0) ∈ L

2N
N−2s (RN ) and there exists a

constant SN,s > 0, which depends only on N and s, such that∥∥∥∥Tr(V )
√
G(·, 0)

∥∥∥∥
L

2N
N−2s (RN )

≤ SN,s

∥∥∥∥Tr(V )
√
G(·, 0)

∥∥∥∥
W s,2(RN )

.

Furthermore, by the Holdër inequality,∫
RN

|ρ|| Tr(V )|2G(·, 0) dx ≤ ∥ρ∥
L

N
2s (RN )

∥∥∥∥Tr(V )
√
G(·, 0)

∥∥∥∥2

L
2N

N−2s (RN )

and so (6.40) follows from (6.9) and (6.32).

6.3 An alternative formulation in Gaussian spaces
In this section we present an alternative formulation of (6.11) and a regularity result. Hence-
forth, for the sake of simplicity, we will assume that t0 = 0; this is not restrictive up to a
translation. We deal with the backward version of (6.10) which is completely equivalent to
(6.10). Let

h(x, t) := g(x,−t) for any t ∈ (0, T ) and a.e. x ∈ RN , (6.41)
U(z, t) := W (z,−t) for a.e.t ∈ (0, T ) and z ∈ RN+1

+ , (6.42)
u := Tr(U). (6.43)

Then U ∈ L2(R, H1(RN+1
+ , y1−2s)) and U weakly solves

y1−2sUt + div(y1−2s∇U) = 0, in RN+1
+ × (0, T ),

Tr(U(·, t)) = u(·, t), on RN , for a.e. t ∈ (0, T ),
− lim

y→0+
y1−2s ∂U

∂y = µ
|x|2su+ hu on RN × (0, T ),

(6.44)

in the sense that

∫ T

0

(∫
RN+1

+

y1−2sUϕt dz

)
dt

= −
∫ T

0

(∫
RN+1

+

y1−2s∇U · ∇ϕdz
)
dt+

∫ T

0

(∫
RN

(
µ

|x|2s
uϕ+ huϕ

)
dx

)
dt, (6.45)

for any ϕ ∈ C∞
c (RN+1

+ × (0, T )), if and only if W is a weak solution to problem (6.10).
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Definition 6.3.1. Let X be a Hilbert space and [T1, T2] ⊂ R. A function U ∈ L2((T1, T2), X)
has a weak derivative Ψ ∈ L2((T1, T2), X) if, for any ϕ ∈ C∞

c ((T1, T2), X),∫ T2

T1
(U, ϕt)X dt = −

∫ T2

T1
(Ψ, ϕ)X dt.

Furthermore we define

H1((T1, T2), X) := {U ∈ L2((T1, T2), X) : U has a weak derivative Ψ ∈ L2((T1, T2), X)}.

Let (X,L,X∗) be a Hilbert triplet. Thanks to the Riesz isomorphism, the property that
U ∈ L2((T1, T2), X∗) has a weak derivative Ψ ∈ L2((T1, T2), X∗) can be rephrased equivalently
as ∫ T2

T1
X∗⟨U(t), ϕt(t)⟩X dt = −

∫ T2

T1
X∗⟨Ψ(t), ϕ(t)⟩X dt

for any ϕ ∈ C∞
c ((T1, T2), X). Then the property that a function U ∈ L2((T1, T2), X) has a

weak derivative Ψ ∈ L2((T1, T2), X∗) is equivalent to the fact that∫ T2

T1
(U(t), ϕt(t))L dt = −

∫ T2

T1
X∗⟨Ψ(t), ϕ(t)⟩X dt (6.46)

for any ϕ ∈ C∞
c ((T1, T2), X).

For any U ∈ L2(R, H1(RN+1
+ , y1−2s)) satisfying (6.45), let us consider the function

V (z, t) := U(
√
tz, t). (6.47)

By a density argument, we can easily verify that

v(·, t) := Tr(U(
√
t·, t)) = u(

√
t·, t).

In Proposition 6.3.2 below, we derive the weak formulation of the problem solved by V .

Proposition 6.3.2. Let U ∈ L2(R, H1(RN+1
+ , y1−2s)) be a solution of (6.45). Then, letting

V be as in (6.47),

V ∈ L2((τ, T ),H), Vt ∈ L2((τ, T ),H∗) for any τ ∈ (0, T ), (6.48)

and

H∗⟨Vt, ϕ⟩H = 1
t

∫
RN+1

+

y1−2s∇V · ∇ϕGdz

− 1
t

∫
RN

(
µ

|x|2s
v(x, t)ϕ(x, 0) + tsh(

√
tx, t)v(x, t)ϕ(x, 0)

)
G(x, 0) dx, (6.49)

for any ϕ ∈ C∞
c (RN+1

+ ) and for a.e. t ∈ (0, T ).

Proof. Let ϕ ∈ C∞
c (RN+1

+ × (0, T )). Testing (6.45) with ϕGs we obtain∫ T

0

(∫
RN+1

+

y1−2sUϕ

[
−N + 2 − 2s

2t + |z|2

4t2

]
Gs dz

)
dt+

∫ T

0

(∫
RN+1

+

y1−2sUϕtGs dz

)
dt

=
∫ T

0

(∫
RN+1

+

y1−2s∇U · z2tϕGsdz

)
dt−

∫ T

0

(∫
RN+1

+

y1−2s∇U · ∇ϕGsdz

)
dt

+
∫ T

0

(∫
RN

(
µ

|x|2s
u(x)ϕ(x, 0, t) + h(x, t)u(x)ϕ(x, 0, t)

)
Gs(x, 0, t) dx

)
dt.
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Let ϕ̃(z, t) := ϕ(
√
tz, t). Then the change of variables z =

√
tz′ yields

∫ T

0

(∫
RN+1

+

y1−2sV ϕ̃

[
−N + 2 − 2s

2t + |z|2

4t

]
Gdz

)
dt

+
∫ T

0

(∫
RN+1

+

y1−2sV

[
ϕ̃t − ∇ϕ̃ · z2t

]
Gdz

)
dt

=
∫ T

0

(∫
RN+1

+

y1−2s∇V · z2t ϕ̃Gdz
)
dt−

∫ T

0

1
t

(∫
RN+1

+

y1−2s∇V · ∇ϕ̃ Gdz
)
dt

+
∫ T

0

1
t

(∫
RN

(
µ

|x|2s
vϕ̃(x, 0, t) + tsh(

√
tx, t)vϕ̃(x, 0, t)

)
Gdx

)
dt (6.50)

for any ϕ̃ ∈ C∞
c (RN+1

+ × (0, T )), where V is defined in (6.47).
Let RN+1

δ be as in (6.31) for any δ > 0. Then, by the Dominated Convergence Theorem,∫
RN+1

+

y1−2sV (∇ϕ̃ · z)Gdz = lim
δ→0+

∫
RN+1

δ

y1−2sV (∇ϕ̃ · z)Gdz.

Furthermore, since

div
(
y1−2sV ϕ̃Gz

)
= y1−2s

[
(N + 2 − 2s)V ϕ̃+ (∇V · z)ϕ̃+ V (∇ϕ̃ · z) − V ϕ̃

|z|2

2

]
G,

an integration by parts on RN+1
δ yields∫

RN+1
δ

y1−2sV (∇ϕ̃ · z)Gdz = −(N + 2 − 2s)
∫
RN+1

δ

y1−2sV ϕ̃Gdz

−
∫
RN+1

δ

y1−2s(∇V · z)ϕ̃G dz +
∫
RN+1

δ

y1−2sV ϕ̃
|z|2

2 Gdz

− δ2−2s
∫
RN

V (x, δ, t)ϕ̃(x, δ, t)G(x, δ) dx. (6.51)

We claim that
lim inf
δ→0+

δ2−2s
∫
RN

V (x, δ, t)ϕ̃(x, δ, t)G(x, δ) dx = 0. (6.52)

To prove (6.52) we argue by contradiction. If (6.52) does not hold, then there exists a constant
C > 0 and δ̄ ∈ (0,+∞) such that

δ1−2s
∫
RN

V (x, δ, t)ϕ̃(x, δ, t)G(xδ) dx > C

δ

for any δ ∈ (0, δ̄). Integrating on (0, δ̄), we obtain, thanks to the Fubini-Tonelli Theorem,

+ ∞ >

∫
RN+1

+

y1−2sV ϕ̃Gdz ≥
∫ δ̄

0

(∫
RN

y1−2sV ϕ̃Gdx

)
dy ≥ C

∫ δ̄

0

1
y
dy = +∞,
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which is a contradiction. Hence there exists a sequence δn → 0+ such that, passing to the
limit as δ = δn and n → ∞ in (6.51), we obtain that, for a.e. t ∈ (0, T ),∫

RN+1
+

y1−2sV (∇ϕ̃ · z)Gdz = −(N + 2 − 2s)
∫
RN+1

+

y1−2sV ϕ̃Gdz

−
∫
RN+1

+

y1−2s(∇V · z)ϕ̃G dz +
∫
RN+1

+

y1−2sV ϕ̃
|z|2

2 Gdz. (6.53)

Putting together (6.50) and (6.53), we conclude that

∫ T

0

(∫
RN+1

+

y1−2sV ϕ̃t dz

)
dt = −

∫ T

0

(
1
t

∫
RN+1

+

y1−2s∇V · ∇ϕ̃ G dz
)
dt

+
∫ T

0

(1
t

∫
RN

(
µ

|x|2s
v(x, t)ϕ̃(x, 0, t) + tsh(

√
tx, t)v(x, t)ϕ̃(x, 0, t)

)
G(x, 0) dx

)
dt.

The integrand at the right hand side of the above equation belongs to H∗ as a function of ϕ̃
for a.e. t ∈ (τ, T ) in view of (6.4), (6.33), (6.35), (6.41) and the Hölder inequality. Hence, in
view of (6.46), we conclude that (6.48) and (6.49) are satisfied.

Remark 6.3.3. From the theory of abstract parabolic equations, see for example [99, The-
orem 8.60] and [44, Theorem 1, p. 473, Theorem 2, p. 477], if V satisfies (6.48), then

V ∈ C0([τ, T ],L), for any τ ∈ (0, T ),
t → ∥V (·, t)∥2

L is absolutely continuous on [τ, T ] for any τ ∈ (0, T ),

H∗⟨Vt(·, t), V (·, t)⟩H = 1
2
d

dt
∥V (·, t)∥2

L = 1
2
d

dt

∫
RN+1

+

y1−2sV 2Gdz

in a distributional sense and for a.e. t ∈ (0, T ). More in general, if V,W satisfies (6.48), then

t → (V (·, t),W (·, t))L is absolutely continuous on [τ, T ] for any τ ∈ (0, T ),

H∗⟨Vt(·, t),W (·, t)⟩H + H∗⟨Wt(·, t), V (·, t)⟩H = d

dt
(V (·, t),W (·, t))L

in a distributional sense and for a.e. t ∈ (0, T ).

Proposition 6.3.4. Let (T̃rU)(·, t) := Tr(U(·, t)) for any U ∈ H1((0, T ),H). Then

T̃r : H1((0, T ),H) → H1((0, T ), L2(RN , |x|−2sG))

is a linear and continuous trace operator such that

(T̃r(U))t(·, t) = Tr(Ut(·, t)), for any U ∈ H1((0, T ),H) and a.e. t ∈ (0, T ).

Proof. In view of (6.35) we have that T̃r(U) ∈ L2((0, T ), L2(RN , |x|−2sG(x, 0))). Further-
more, there exists a sequence {Un}n∈N ⊂ C∞([0, T ],H) such that Un → U as n → ∞ in
H1((0, T ),H) thanks to [87, Lemma 2.5.6.].

Let us prove that T̃r(Un) ∈ C1([0, T ], L2(RN , |x|−2sG(x, 0))) and that

(T̃r(Un))t(·, t) = Tr((Un)t(·, t)) for any t ∈ (0, T ).
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We start by showing that the incremental ratio of T̃r(Un)(·, t) tends to Tr((Un)t(·, t)) strongly
in L2(RN , |x|−2sG(x, 0)) for any t ∈ (0, T ). Let t ∈ (0, T ) and h ∈ R be such that |h| ≤
min{t, T − t}. Then, by definition of T̃r and linearity,

∫
RN

G(x, 0)
|x|2s

∣∣∣∣∣
(

T̃r(Un)(·, t+ h) − T̃r(Un)(·, t)
h

)
− T̃r((Un)t(·, t))

∣∣∣∣∣
2

dx

=
∫
RN

G(x, 0)
|x|2s

∣∣∣∣Tr
(
Un(·, t+ h) − Un(·, t)

h
− (Un)t(·, t)

)∣∣∣∣2 dx
≤ const

∥∥∥∥Un(·, t+ h) − Un(·, t)
h

− (Un)t(·, t)
∥∥∥∥2

H
→ 0

as h → 0+, in view of (6.35).
In the same way we can show that (T̃r(Un))t ∈ C0([0, T ], L2(RN , |x|−2sG(x, 0))). It follows

that, taking the limit of the incremental ratio,

d

dt

(
T̃r(Un), ϕ

)
L2(RN ,|x|−2sG(x,0))

= (Tr((Un)t), ϕ)L2(RN ,|x|−2sG(x,0)) +
(
T̃r(Un), ϕt

)
L2(RN ,|x|−2sG(x,0))

for any function ϕ ∈ C∞
c ((0, T ), L2(RN , |x|−2sG(x, 0))).

Then, for any test function ϕ ∈ C∞
c ((0, T ), L2(RN , |x|−2s)G(x, 0))),

∫ T

0

(∫
RN

T̃r(U)
|x|2s

ϕtG(x, 0) dx
)
dt = lim

n→∞

∫ T

0

(∫
RN

T̃r(Un)
|x|2s

ϕtG(x, 0) dx
)
dt

= − lim
n→∞

∫ T

0

(∫
RN

Tr((Un)t)
|x|2s

ϕG(x, 0) dx
)
dt =

∫ T

0

(∫
RN

Tr(Ut)
|x|2s

ϕG(x, 0) dx
)
dt.

We conclude that there exists the weak derivative with respect to t of T̃r(U) and that

(T̃r(U))t(·, t) = Tr(Ut(·, t)) for a.e. t ∈ (0, T ).

The continuity of the operator follows from (6.35).

Remark 6.3.5. The natural embedding

I : L → H∗, I(V )(W ) :=
∫
RN+1

+

y1−2sVWGdz

is linear, continuous and injective. With a slight abuse of notation, we will identify L and
I(L).

Proposition 6.3.6. For K > 0, let T̄ ∈ (0,min{T, 1}) depending on K be as in Proposition
6.2.7. Let T̃ ∈ (0, T̄ ] and f ∈ L1

loc(RN × (0, T̃ )) be such that

|f(x, t)| + |∇f(x, t) · x| ≤ K(1 + |x|−2s+ε) for a.e. t ∈ (0, T̃ ) and a.e. x ∈ RN , (6.54)

ft ∈ L∞
loc((0, T̃ ), L

N
2s (RN )).

If τ ∈ (0, T̃ ), V ∈ L2((τ, T̃ ),H), Vt ∈ L2((τ, T̃ ),H∗), V (·, T̃ ) ∈ H, and V is a solution of
(6.49) with h = f , then Vt ∈ L2((τ, T̃ ),L) in the sense of Remark 6.3.5.
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Proof. For all t ∈ (0, T̃ ), let us consider the linear map

At : H → H∗,

H∗⟨At(V ), ϕ⟩H :=
∫
RN+1

+

y1−2s∇V · ∇ϕGdz

−
∫
RN

(
µ

|x|2s
Tr(V ) Tr(ϕ) + tsf(

√
tx, t) Tr(V ) Tr(ϕ)

)
Gdx for any ϕ, V ∈ H.

In view of (6.54), the Hölder inequality, (6.33) and (6.35), At is well defined and continuous.
From standard techniques in the theory of parabolic equations, see for example [57], the
Faedo-Galerkin method provides a sequence of functions {Vn}n∈N such that:

Vn ∈ L2((τ, T̃ ),H) for any n ∈ N,
Vn ⇀ V weakly in L2((τ, T̃ ),H) as n → ∞, (6.55)
(Vn)t ∈ L2((τ, T̃ ),H) for any n ∈ N,
(Vn)t ⇀ Vt weakly in L2((τ, T̃ ),H∗) as n → ∞, (6.56)
Vn(·, T̃ ) → V (·, T̃ ) strongly in H as n → ∞,

{Vn}n∈N is bounded in C([τ, T̃ ],L). (6.57)

For any n ∈ N, the function Vn belongs to H1((τ, T̃ ),Wn) and solves, for a.e. t ∈ (0, T̃ ),

t

∫
RN+1

+

y1−2s(Vn)tϕGdz =
∫
RN+1

+

y1−2s∇Vn · ∇ϕGdz

−
∫
RN

(
µ

|x|2s
Tr(Vn) Tr(ϕ) + tsf(

√
tx, t) Tr(Vn) Tr(ϕ)

)
G(x, 0) dx, (6.58)

for any ϕ ∈ Wn ⊂ H, where Wn is a suitable finite dimensional subspace of H. Testing (6.58)
with (Vn)t and integrating with respects to t on (τ, T̃ ), we obtain that

∫ T̃

τ
t

(∫
RN+1

+

y1−2s|(Vn)t|2Gdz
)
dt =

∫ T̃

τ
H∗⟨At(Vn), (Vn)t⟩H dt

= 1
2 H∗

〈
AT̃ (Vn)(T̃ ), Vn(T̃ )

〉
H

−1
2 H∗⟨Aτ (Vn)(τ), Vn(τ)⟩H

+ 1
2

∫ T̃

τ

(∫
RN

[
sts−1f(

√
tx, t) + 1

2 t
s− 1

2 ∇f(
√
tx, t) · x+ tsft(

√
tx, t)

]
| Tr(Vn)|2G(·, 0)dx

)
dt

thanks to Proposition 6.3.4. For a.e. t ∈ (τ, T̃ ),∫
RN

∣∣∣∣sts−1f(
√
tx, t) + 1

2 t
s− 1

2 ∇f(
√
tx, t) · x

∣∣∣∣ | Tr(Vn)|2G(·, 0)dx ≤ const ∥Vn∥2
H (6.59)

in view of (6.33), (6.35), and (6.54).
By (6.38), (6.40), (6.55), (6.57), and (6.59), and we conclude that {(Vn)t}n∈N is bounded

in L2((τ, T̃ ),L). Then, up to a subsequence, there exists W ∈ L2((τ, T̃ ),L) such that

(Vn)t ⇀W weakly in L2((τ, T̃ ),L).

By (6.56) we conclude that W = Vt, hence Vt ∈ L2((τ, T̃ ),L).
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6.4 Spectrum of a weighted Ornstein-Uhlenbeck operator
In this section we prove Proposition 6.1.5. The following compactness result ensures that the
point spectrum of (6.12) is discrete.

Proposition 6.4.1. The embedding i : H → L, i(V ) = V , is compact.

Proof. Let {Vn} be a sequence converging to some V ∈ H weakly in H as n → ∞. Then by
[111, Theorem 19.7], for any R > 0

lim
n→∞

∫
B+

R

y1−2s|V − Vn|2Gdz = 0. (6.60)

Moreover, for any n ∈ N and R > 0, by (6.29),∫
RN+1

+ \B+
R

y1−2s|V − Vn|2Gdz ≤ 1
R2

∫
RN+1

+ \B+
R

y1−2s|z|2|V − Vn|2Gdz

≤ 16
R2

∫
RN+1

+

y1−2s|∇(V − Vn)|2Gdz + 4(N + 2 − 2s)
R2

∫
RN+1

+

y1−2s|V − Vn|2Gdz. (6.61)

Since {Vn}n∈N is bounded in H we conclude by (6.61) that∫
RN+1

+ \B+
R

y1−2s|V − Vn|2Gdz ≤ const
R2 for any R > 0 and for any n ∈ N. (6.62)

Putting together (6.60) and (6.62) we obtain that Vn → V strongly in L as n → +∞, thus
completing the proof.

Proposition 6.4.2. The eigenvalues of (6.12) form a non-decreasing, diverging sequence
{γk}k∈N\{0}. Furthermore there exists an orthonormal basis of L of eigenfunctions of (6.12)
whose elements belong to H.

Proof. Let L : H → H∗ be defined as

L(V )(ϕ) :=
∫
RN+1

+

y1−2s∇U · ∇ϕGdz

−
∫
RN

µ

|x|2s
Tr(U) Tr(ϕ)Gdx+ N + 2 − 2s

4

∫
RN+1

+

y1−2sV ϕGdz

for any V, ϕ ∈ H. In view of (6.38) in the case f ≡ 0, the operator L is coercive. It follows
that the operator T : L → L defined as T := L−1 is well-defined. Since T is also compact in
view of Proposition 6.4.1, the conclusion follows from by the Spectral Theorem.

Remark 6.4.3. For any r > 0, there exists a linear, continuous and compact trace operator

TrS+
r

: H → L2(S+
r , y

1−2s).

Indeed H ↪→ H1(B+
r , y

1−2s) since G > const > 0 on B+
r ; moreover, in view of [111, Theo-

rem 19.7] and the Divergence Theorem, one can easily verify that the trace operator from
H1(B+

r , y
1−2s) to L2(S+

r , y
1−2s) is compact.
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Proof of Proposition 6.1.5. Let γ be an eigenvalue of problem (6.12) and Y an associ-
ated eigenfunction. Let {ψk}k∈N\{0} be the orthonormal basis of L2(SN

+ , θ
1−2s
N+1 ) introduced

in Section 6.1. By Remark 6.4.3, for any r > 0 the function Y admits a trace TrS+
r

(Y ) ∈
L2(S+

r , y
1−2s). By a change of variables TrSN+(Y (r·)) ∈ L2(SN

+ , θ
1−2s
N+1 ), hence

TrSN+(Y (r·)) =
∞∑

k=1
φk(r)ψk, with φk(r) :=

∫
SN

+

θ1−2s
N+1 TrSN+(Y (rθ))ψk(θ) dS.

Since, by classical elliptical regularity theory, Y ∈ C∞
loc(R

N+1
+ ), so writing z = rθ where

r = |z| and θ = z
|z| , we have that Y (z) = Y (rθ) = TrSN+(Y (r·))|θ =

∑∞
k=1 φk(r)ψk(θ) for any

z = rθ ∈ RN+1
+ . Then thanks to [60, Lemma 2.1], (6.12), and (6.16), a direct computation

shows that

φ′′
k(r) +

(
N + 1 − 2s

r
− r

2

)
φ′

k(r) +
(
γ − νk

r2

)
φk(r) = 0, in (0,+∞) (6.63)

for any k ∈ N \ {0}. Since Y ∈ H

+ ∞ >

∫
RN+1

+

y1−2s Y
2

|z|2
e− |z|2

4 dz =
∫ ∞

0
rN−1−2se− r2

4

(∫
SN

+

θ1−2s
N+1Y

2(rθ) dS
)
dr

=
∫ ∞

0
rN−1−2se− r2

4

( ∞∑
k=1

φ2
k(r)

)
dr ≥

∫ ∞

0
rN−1−2se− r2

4 φ2
k(r) dr, (6.64)

for any k ∈ N \ {0}, thanks to Plancherel’s identity and (6.29). Analogously

+∞ >

∫
RN+1

+

y1−2sY 2e− |z|2
4 dz ≥

∫ ∞

0
rN+1−2se− r2

4 φ2
k(r) dr, (6.65)

for any k ∈ N \ {0}. Furthermore, letting

wk(t) := (4t)
αk
2 φk(2

√
t) for any t ∈ (0,∞),

(6.63) and a direct computation imply that wk solves

tw′′
k(t) +

(
N + 2 − 2s

2 − αk − t

)
w′

k(t) +
(
αk

2 + γ

)
wk(t) in (0,∞). (6.66)

Equation (6.66) is the well-known Kummer Confluent Hypergeometric Equation,

tw′′
k(t) + (b− t)w′

k(t) − cwk(t) in (0,∞), (6.67)

with parameters b =
(

N+2−2s
2 − αk

)
> 1, by (6.17) and (6.19), and c = −

(αk
2 + γ

)
, see [11]

or [103]. Then the solution wk can be written as

wk(t) = AkM

(
−αk

2 − γ,
N + 2 − 2s

2 − αk, t

)
+BkT

(
−αk

2 − γ,
N + 2 − 2s

2 − αk, t

)
with Ak, Bk ∈ R, where M(c, b, t) denotes the Kummer function and T (c, b, t) denotes the
Tricomi function; M(c, b, t) and T (c, b, t) are linearly independent solutions of (6.67) (see [11]
or [103]). Furthermore from [11]

T

(
−αk

2 − γ,
N + 2 − 2s

2 − αk, t

)
∼ const t1− N+2−2s

2 +αk as t → 0+, (6.68)
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where the constant in (6.68) depends only on s, αk, N, γ and is different from 0. We recall
the following expression for the Kummer function:

M(c, b, t) =
∞∑

n=0

(c)n

(b)n

tn

n! ,

where (·)n is the Pochhammer’s symbol defined in (6.20). It is clear that M(c, b, t) has a finite
limit as t → 0+, while its asymptotic behaviour at +∞ depends on the parameter c. Then,
for any k ∈ N \ {0}, if Bk ̸= 0

wk(t) ∼ constBkt
1− N+2−2s

2 +αk as t → 0+,

for some const ̸= 0, and so

φk(r) ∼ Bkconst r−N+2s+αk as r → 0+.

From (6.64) we deduce that necessarily Bk = 0 for any k ∈ N \ {0}. Hence

wk(t) = AkM

(
−αk

2 − γ,
N + 2 − 2s

2 − αk, t

)
. (6.69)

Moreover, if
(αk

2 + γ
)
/∈ N, then

M

(
−αk

2 − γ,
N + 2 − 2s

2 − αk, t

)
∼ const ett

αk
2 −γ− N

2 −1+s as t → +∞, (6.70)

for some const ̸= 0, see [11]. From (6.69) and (6.70) it follows that

φk(r) ∼ Akconst e
r2
4 r−2γ−N−2+2s as r → +∞

and hence necessarily Ak = 0 for any k ∈ N \ {0} in view of (6.65). In conclusion, if γ is an
eigenvalue of (6.12), then there exists k ∈ N \ {0} such that (αk

2 + γ) ∈ N.
On the other hand, for any m ∈ N and k ∈ N \ {0}, letting Ym,k be as in (6.18), a direct

computation shows that Ym,k is a solution of (6.12) with γ := m − αk
2 , by [60, Lemma 2.1],

and (6.16). Hence (m− αk
2 ) is an eigenvalue of (6.12).

From the well-known correspondence between Kummer functions and the generalized
Laguerre polynomials La

n, we have that Pj,n(t) =
(n+aj

n

)−1
L

aj
n (t), where aj =

((
N−2s

2
)2 +

νj(µ)
)1/2. Then, recalling that {ψk}k∈N\{0} is an orthonormal basis of L2(SN

+ , θ
1−2s
N+1 ) and

using the orthogonality relation for Laguerre polynomials, it is easy to verify that Ym1,j1 is
orthogonal to Ym2,j2 in L whenever (m1, j1) ̸= (m2, j2). Then we conclude that (6.23) is an
orthonormal basis of L.

Proposition 6.4.4. Let Y be a solution of (6.12) in the sense of (6.14) such that Tr(Y ) = 0.
Then Y ≡ 0 on RN+1

+ .
Proof. If Tr(Y ) = 0, by (6.12) we have that

(
− lim

y→0+
y1−2s ∂Y

∂y

)
= 0 on RN . Hence the function

Ŷ (x, y) =
{
Y (x, y), if y ≥ 0,
0, if y < 0,

belongs to H1
loc(RN+1, |y|1−2s) and weakly solves

− div(|y|1−2sG∇Ŷ ) = γ|y|1−2sG Ŷ in RN+1.

The unique continuation principle for elliptic equations with Muckenhoupt weights proved in
[127] then implies that Ŷ ≡ 0 in RN+1, so that Y ≡ 0 on RN+1

+ .
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6.5 An Almgren-Poon type monotonicity formula
In this section we develop an Almgren-Poon type monotonicity formula for solutions of (6.49).
Let T̄ be as in Proposition 6.2.7 with K = Cg and Cg as in (6.4), and

α := T

2(⌊T/T̄ ⌋ + 1)

where ⌊·⌋ denotes the floor function, i.e. ⌊x⌋ = max{j ∈ Z : j ≤ x}. It follows that

(0, T ) =
k⋃

i=1
(ai, bi)

where
k = 2(⌊T/T̄ ⌋ + 1) − 1, ai = (i− 1)α, and bi = (i+ 1)α.

It is clear that 2α ∈ (0, T̄ ) and (ai, bi) ∩ (ai+1, bi+1) ̸= ∅. For every i ∈ {1, . . . , k} we define

Vi(z, t) = U(
√
tz, t+ ai), z ∈ RN+1

+ , t ∈ (0, 2α),
vi(x, t) = u(

√
tx, t+ ai), x ∈ RN , t ∈ (0, 2α),

see (6.42) and (6.43). Then Tr(Vi(·, t)) = vi(·, t) for every i = 1, . . . , k and a.e. t ∈ (0, 2α).

Remark 6.5.1. Reasoning as in Section 6.3, it is easy to see that, for any i = 1 . . . , k, the
function Vi solves

H∗⟨(Vi)t, ϕ⟩H = 1
t

∫
RN+1

+

y1−2s∇Vi · ∇ϕGdz

− 1
t

∫
RN

(
µ

|x|2s
vi(x, t)ϕ(x, 0) + tsh(

√
tx, t+ ai)vi(x, t)ϕ(x, 0)

)
G(x, 0) dx, (6.71)

for any ϕ ∈ C∞
c (RN+1) and a.e. t ∈ (0, 2α). Furthermore, by Proposition 6.3.2 Vi ∈

L2((τ, 2α),H) and (Vi)t ∈ L2((τ, 2α),H∗) for any τ ∈ (0, 2α).

For any i = i, . . . , k and t ∈ (0, 2α), let

Hi(t) :=
∫
RN+1

+

y1−2sV 2
i Gdz

and

Di(t) := 1
t

∫
RN+1

+

y1−2s|∇Vi|2Gdz − 1
t

∫
RN

(
µ

|x|2s
v2

i + tsh(
√
tx, t+ ai)v2

i

)
G(x, 0) dx. (6.72)

Proposition 6.5.2. For any i = 1, . . . , k, we have that Hi ∈ W 1,1
loc (0, 2α) and

H ′
i(t) = 2 H∗

t
⟨(Vi)t, Vi⟩Ht

= 2Di(t) (6.73)

in a distributional sense and a.e. in (0, 2α).

Proof. The claim follows from Remark 6.3.3 and (6.72).
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Proposition 6.5.3. Let CN,s,µ be as in Proposition 6.2.7 with K := Cg and Cg as in (6.4).
Then the function

t → t−2CN,s,µ+ N−2+2s
2 Hi(t)

is non-decreasing in (0, 2α).

Proof. In view of (6.38) and (6.73)

H ′
i(t) ≥ 1

t

(
2CN,s,µ − N − 2 + 2s

2

)
Hi(t) for a.e. t ∈ (0, 2α),

hence
d

dt

(
t−2CN,s,µ+ N−2+2s

2 Hi(t)
)

≥ 0 for a.e. t ∈ (0, 2α).

We conclude that t → t−2CN,s,µ+ N−2+2s
2 Hi(t) is non-decreasing in (0, 2α).

Corollary 6.5.4. If 1 ≤ i ≤ k and Hi(t̄) = 0 for some t̄ ∈ (0, 2α), then Hi(t) = 0 for any
t ∈ (0, t̄).

Proof. Since t → t−2CN,s,µ+ N−2+2s
2 Hi(t) is non-decreasing in (0, 2α) by Proposition 6.5.3 and it

is non-negative, from the assumption H(t̄) = 0 it follows that Hi(t) = 0 for any t ∈ (0, t̄).

The regularity of the function tDi(t) is discussed in the following proposition.

Proposition 6.5.5. If 1 ≤ i ≤ k and Ti ∈ (0, 2α) is such that Vi(·, Ti) ∈ H then

(i) (Vi)t ∈ L2((τ, Ti),L) for any τ ∈ (0, Ti),

(ii) the function t → tDi(t) belongs to W 1,1
loc (0, Ti) and its weak derivative is as follows:

d

dt
(tDi(t)) = 2t

∫
RN+1

+

y1−2s |(Vi)t|2Gdz −
∫
RN

sts−1h(
√
tx, t+ ai)v2

i (x, t)G(x, 0) dx

−
∫
RN

(
ts− 1

2 ∇h(
√
tx, t+ ai) · x2 + tsht(

√
tx, t+ ai)

)
v2

i (x, t)G(x, 0) dx. (6.74)

Proof. Let 1 ≤ i ≤ k. Then (i) follows from Proposition 6.3.6 and Remark 6.5.1.
With an approximating procedure similar to Proposition 6.3.6, formally testing (6.71)

with (Vi)t yields, for a.e. τ ∈ (0, Ti),∫
RN+1

+

y1−2s|∇Vi(·, τ)|2Gdz −
∫
RN

(
µ

|x|2s
v2

i (·, τ) + τ sh(
√
τx, τ + ai)v2

i (·, τ)
)
G(x, 0) dx

=
∫
RN+1

+

y1−2s|∇Vi(·, Ti)|2Gdz

−
∫
RN

(
µ

|x|2s
v2

i (·, Ti) + Ti
sh(
√
Tix, Ti + ai)v2

i (·, Ti)
)
G(x, 0) dx

− 2
∫ Ti

τ
t

(∫
RN+1

y1−2s(Vi)2
tGdz

)
dt

+
∫ Ti

τ

(∫
RN

(
sts−1h(

√
tx, t+ ai) + tsht(

√
tx, t+ ai)

)
v2

i (x, t)G(x, 0) dx
)
dt

+
∫ Ti

τ

(∫
RN

ts− 1
2 ∇h(

√
tx, t+ ai) · x2v

2
i (x, t)G(x, 0) dx

)
dt,
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hence, thanks to (6.3), (6.4) and (6.41), the function

τ 7→
∫
RN+1

+

y1−2s|∇Vi(·, τ)|2Gdz −
∫
RN

(
µ

|x|2s
v2

i (·, τ) + τ sh(
√
τx, τ)v2(·, τ)

)
G(x, 0) dx

is absolute continuous on [T1, T2] for any [T1, T2] ⊂ (0, Ti) and, for a.e. τ ∈ (0, Ti),

d

dτ

(∫
RN+1

+

y1−2s|∇Vi(·, τ)|2Gdz

−
∫
RN

(
µ

|x|2s
v2

i (·, τ) + τ sh(
√
τx, τ + ai)v2

i (·, τ)
)
G(x, 0) dx

)

= 2τ
∫
RN+1

+

y1−2s(Vi)2
t (z, τ)G(z) dz −

∫
RN

τ s− 1
2 ∇h(

√
τx, τ + ai) · x2 v

2
i (τ, x)G(x, 0) dx

−
∫
RN

(
sτ s−1h(

√
τx, τ + ai) + τ sht(

√
τx, τ + ai)

)
v2

i (τ, x)G(x, 0) dx.

The proof is thereby complete.

For any i = 1 . . . k, let us define the Almgren-Poon frequency function

Ni : (0, 2α) → R ∪ {−∞,+∞}, N (t) := tDi(t)
Hi(t)

.

Proposition 6.5.6. If there exists βi, Ti ∈ (0, 2α) such that

βi < Ti, Hi(t) > 0 for all t ∈ (βi, Ti), and Vi(·, Ti) ∈ H, (6.75)

then Ni ∈ W 1,1
loc (βi, Ti) and the weak derivative of Ni can be written as

N ′
i (t) = ν1,i(t) + ν2,i(t) for a.e. t ∈ (βi, Ti) (6.76)

where

ν1,i(t) := 2t
H2

i (t)

[(∫
RN+1

+

y1−2s |(Vi)t|2Gdz
)(∫

RN+1
+

y1−2sV 2
i Gdz

)

−
(∫

RN+1
+

y1−2s(Vi)tViGdz

)2 ]
(6.77)

and

ν2,i(t) := − 1
Hi(t)

×
(∫

RN

(
sts−1h(

√
tx, t+ ai) + ts− 1

2 ∇h(
√
tx, t+ ai) · x2

+ tsht(
√
tx, t+ ai)

)
v2

i (x, t)G(x, 0) dx
)
. (6.78)

Furthermore ν1,i(t) ≥ 0 for a.e. t ∈ (βi, Ti) and

Ni(t) > −N + 2 − 2s
4 for any t ∈ (βi, Ti). (6.79)
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Proof. Since Hi(t) > 0 for any t ∈ (βi, Ti), then 1/Hi, tDi ∈ W 1,1
loc (βi, Ti) by Proposition 6.5.2

and Proposition 6.5.5. Hence Ni ∈ W 1,1
loc (βi, Ti). Furthermore

N ′
i (t) = (tDi)′Hi − tDiH

′
i

H2
i

and so, thanks to (6.73) and (6.74), we conclude that (6.76) holds with ν1,i and ν2,i as in
(6.77) and (6.78) respectively. By the Cauchy-Schwarz inequality in L we have ν1,i(t) ≥ 0
for a.e. t ∈ (βi, Ti). Finally, (6.79) follows directly from (6.38) with the function f(x, t) :=
h(x, t+ ai).

The remainder term ν2,i can be estimated in terms of the frequency function as follows.

Proposition 6.5.7. Let ν2,i be as in (6.78). Then there exists a constant C1 > 0 such that,
if i ∈ {i, . . . , k} and βi, Ti ∈ (0, 2α) are as in (6.75), then

|ν2,i(t)| ≤ C1

(
t−1+ ε

2 + ∥ht(·, t+ ai)∥
L

N
2s (RN )

)(
Ni(t) + N + 2 − 2s

4

)
(6.80)

for a.e. t ∈ (βi, Ti).

Proof. Estimate (6.80) follows from (6.38), (6.39), and (6.40), taking into account that, by a
change of variables, ∥∥∥tsht(

√
t·, t+ ai)

∥∥∥
L

N
2s (RN )

= ∥ht(·, t+ ai)∥
L

N
2s (RN )

for any i ∈ {i, . . . , k}.

Proposition 6.5.8. There exists a constant C2 > 0 such that, if i ∈ {i, . . . , k} and βi, Ti ∈
(0, 2α) are as in (6.75), then

Ni(t) ≤ −N + 2 − 2s
4 + C2

(
Ni(Ti) + N + 2 − 2s

4

)
(6.81)

for any t ∈ (βi, Ti).

Proof. Since ν1,i ≥ 0 by Proposition 6.5.6, from (6.80) it follows that, a.e. in (βi, Ti),

N ′
i (t) ≥ −C1

(
t−1+ ε

2 + ∥ht(·, t+ ai)∥
L

N
2s (RN )

)(
Ni(t) + N + 2 − 2s

4

)
.

By integration we obtain the estimate

Ni(t) ≤ −N + 2 − 2s
4 +

(
Ni(Ti) + N + 2 − 2s

4

)
e

( 2C1
ϵ

T
ε/2
i +C1∥ht(·,t+ai)∥L1((0,2α),LN/(2s)(RN ))

)
for any t ∈ (βi, Ti), which implies (6.81) in view of (6.3) and (6.41).

Proposition 6.5.9. For any i ∈ {i, . . . , k}, if Hi(t) ̸≡ 0 then

Hi(t) > 0 for all t ∈ (0, 2α). (6.82)
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Proof. Since Hi(t) ̸≡ 0 and Hi is continuous by Remark 6.3.3, there exists Ti ∈ (0, 2α) such
that

Hi(Ti) > 0 and Vi(·, Ti) ∈ H. (6.83)

By Proposition 6.5.3 it follows that Hi(t) > 0 for any t ∈ [Ti, 2α). If we define

ti := inf{τ ∈ (0, Ti) : Hi(t) > 0 for all t ∈ (τ, 2α)},

then either
ti = 0 and Hi(t) > 0 for all t ∈ (0, 2α)

or

0 < ti < Ti and
{
Hi(t) = 0, for any t ∈ (0, ti],
Hi(t) > 0, for any t ∈ (ti, 2α).

(6.84)

Now we prove that the second case can not occur arguing by contradiction. If (6.84) holds,
then, thanks to Proposition 6.5.8 and (6.73),

t

2H
′
i(t) ≤

(
−N + 2 − 2s

4 + C2

(
Ni(Ti) + N + 2 − 2s

4

))
Hi(t)

for a.e. t ∈ (ti, Ti). Integrating the above inequality we obtain

Hi(t) ≥ t2(− N+2−2s
4 +C2(Ni(Ti)+ N+2−2s

4 ))

T
2(− N+2−2s

4 +C2(Ni(Ti)+ N+2−2s
4 ))

i

Hi(Ti)

for all t ∈ [ti, Ti). Since Hi(ti) = 0, we have reached a contradiction in view of (6.83). In
conclusion, (6.82) must hold.

Proposition 6.5.10. For any i ∈ {1, . . . , k − 1}

Hi(t) ≡ 0 in (0, 2α) if and only if Hi+1(t) ≡ 0 in (0, 2α).

Proof. We start by proving that if Hi(t) ≡ 0 in (0, 2α) then Hi+1(t) ≡ 0 in (0, 2α). By
contradiction, if there exists t̄ ∈ (0, 2α) such that Hi+1(t̄) > 0, then Hi+1(t) > 0 for all
t ∈ (0, 2α) by Proposition 6.5.9. It follows that Vi+1(·, t) ̸≡ 0 for all t ∈ (0, 2α) and V (·, t) ̸≡ 0
for all t ∈ (iα, (i+ 1)α). Therefore Vi(·, t) ̸≡ 0 for some t ∈ (0, 2α), which is a contradiction.

Now let us prove that, if Hi+1(t) ≡ 0 in (0, 2α), then Hi(t) ≡ 0 in (0, 2α). By contradic-
tion, let us assume that Hi(t) ̸≡ 0. Then Hi(t) > 0 for any t ∈ (0, 2α) by Proposition 6.5.9.
It follows that Vi(·, t) ̸≡ 0 for all t ∈ (0, 2α) and so Vi+1(·, t) ̸≡ 0 for all t ∈ (0, α), hence
Hi+1(t) ̸≡ 0 for all t ∈ (0, α), which is a contradiction.

Proposition 6.5.11. If U is a weak solution of (6.44) such that U ̸≡ 0 in RN+1
+ × (0, T ),

then
Hi(t) > 0 for any t ∈ (0, 2α) and i ∈ {1, . . . , k}.

Proof. If U ̸≡ 0 in RN+1
+ × (0, T ), then there exists some i0 ∈ {1, . . . , k} such that Vi ̸≡ 0 in

(0, 2α). Then Hi0(t) ̸≡ 0 in (0, 2α). Thanks to Proposition 6.5.10, Hi(t) ̸≡ 0 in (0, 2α) for
any i ∈ {1, . . . , k}. In view of Proposition 6.5.9, we can therefore conclude that Hi(t) > 0 for
any t ∈ (0, 2α) and i ∈ {1, . . . , k}.
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Proof of Theorem 6.1.10. It is not restrictive to assume that t0 = 0. Let W be a solution
of (6.11). Let t̄ ∈ (0, T ) be such that W (z,−t̄) ≡ 0 in RN+1

+ , so that, letting U be as in
(6.42), U(z, t̄) ≡ 0 in RN+1

+ . Then t̄ ∈ (ai, bi) for some i ∈ {1, . . . , k} and Hi(t̄− ai) = 0. By
Proposition 6.5.11 it follows that U ≡ 0 in RN+1

+ × (0, T ) and hence, by (6.42), W ≡ 0 in
RN+1

+ × (−T, 0).

From now on, we assume that U ̸≡ 0 in RN+1
+ × (0, T ) and, defining V as in (6.47), we

denote, for all t ∈ (0, 2α),

H(t) := H1(t) =
∫
RN+1

+

y1−2sV 2(z, t)G(z) dz,

D(t) := D1(t) = 1
t

(∫
RN+1

+

y1−2s|∇V |2Gdz −
∫
RN

(
µ

|x|2s
v2 + tsh(

√
tx, t)v2

)
G(x, 0) dx

)
.

Since we are assuming that U ̸≡ 0 in RN+1
+ ×(0, T ), thanks to Proposition 6.5.11 the Almgren-

Poon type frequency function

N : (0, 2α) → R, N (t) := tD(t)
H(t) .

is well-defined. Furthermore, in view of Proposition 6.5.6 N ∈ W 1,1
loc (0, 2α) and

N ′(t) = ν1(t) + ν2(t) for a.e. t ∈ (0, 2α),

where we have defined
ν1(t) := ν1,1(t), ν2(t) := ν2,1(t), (6.85)

according to notation (6.77)–(6.78). Since V (·, t) ∈ H for a.e. t ∈ (0, T ), there exists

T0 ∈ (0, 2α) such that V (·, T0) ∈ H. (6.86)

Proposition 6.5.12. The limit
γ := lim

t→0+
N (t) (6.87)

exists and it is finite.

Proof. From Propositions 6.5.6 and 6.5.8 it follows that N is bounded. Hence the limit (6.87),
if it exists, is finite. Furthermore, from Proposition 6.5.6 we have that ν1 ≥ 0 a.e. in (0, 2α),
whereas ν2 ∈ L1(0, T0) by Proposition 6.5.7, Proposition 6.5.8, (6.41), and (6.3), where T0 is
as in (6.86). Then, from

N (t) = N (T0) −
∫ T0

t
N ′(τ) dτ = N (T0) −

∫ T0

t
ν1(τ) dτ −

∫ T0

t
ν2(τ) dτ,

we conclude that the limit (6.87) exists.

Proposition 6.5.13. Let T0 be as in (6.86) and γ as in (6.87). Then there exists a constant
K1 > 0 such that

H(t) ≤ K1t
2γ for all t ∈ (0, T0). (6.88)

Moreover, for any σ > 0, there exists a constant K2(σ) > 0 such that

H(t) ≥ K2(σ)t2γ+σ for all t ∈ (0, T0). (6.89)
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Proof. Thanks to the Hölder inequality, (6.41), (6.3), Proposition 6.5.6, Proposition 6.5.7,
and Proposition 6.5.8, for any t ∈ (0, T0) we have that

N (t) − γ =
∫ t

0
(ν1(τ) + ν2(τ)) dτ ≥

∫ t

0
ν2(τ) dτ

≥ −C1C2

(
Ni(Ti) + N + 2 − 2s

4

)∫ t

0

(
τ−1+ ε

2 + ∥ht(·, τ)∥
L

N
2s (RN )

)
dτ ≥ −C3t

δ,

for some constant C3 > 0, where δ := min
{

ε
2 , 1 − 1

r

}
. It follows that, taking into account

(6.73),
H ′(t)
H(t) = 2

t
N (t) ≥ 2γ

t
− 2C3t

−1+δ for a.e. t ∈ (0, T0).

An integration over (t, T0) yields

H(t) ≤ H(T0)
T 2γ

0
e

2C3T δ
0

δ t2γ for all t ∈ (0, T0),

so that (6.88) is proved.
Furthermore, since γ := limt→0+ N (t), for any σ > 0 there exists Tσ ∈ (0, T0) such that

N (t) < γ + σ/2 for any t ∈ (0, Tσ), and hence

H ′(t)
H(t) = 2

t
N (t) < 2γ + σ

t
for any t ∈ (0, Tσ).

An integration of the above estimate over (t, Tσ), together with continuity and positivity of
H in [Tσ, T0], yields (6.89) for some constant K2(σ).

6.6 The Blow-up Analysis
If V is a solution of (6.49), then it is easy to see that, for any λ > 0, the function

Vλ(z, t) := V (z, λ2t) (6.90)

belongs to L2((τ, T/λ2),H) for all 0 < τ < T/λ2 and solves

H∗⟨(Vλ)t, ϕ⟩H = 1
t

∫
RN+1

+

y1−2s∇Vλ · ∇ϕGdz

− 1
t

∫
RN

(
µ

|x|2s
vλ(x, t)ϕ(x, 0) + λ2stsh(λ

√
tx, λ2t)vλ(x, t)ϕ(x, 0)

)
G(x, 0) dx, (6.91)

for a.e. t ∈ (0, T/λ2) and any ϕ ∈ C∞
c (RN+1

+ ), where

vλ(x, t) := v(x, λ2t) = Tr(Vλ(·, t))(x).

We can also define the height and energy functions associated to the scaled equation (6.91)
as

Hλ(t) =
∫
RN+1

+

y1−2sV 2
λGdz,

Dλ(t) = 1
t

(∫
RN+1

+

y1−2s|∇Vλ|2Gdz −
∫
RN

(
µ

|x|2s
v2

λ + λ2stsh(λ
√
tx, λ2t)v2

λ

)
G(x, 0) dx

)
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and the Almgren-Poon frequency function as

Nλ(t) := tDλ(t)
Hλ(t) . (6.92)

For any λ > 0, we have the following scaling properties:

Dλ(t) = λ2D(λ2t), Hλ(t) = H(λ2t) and Nλ(t) = λ2tD(λ2t)
H(λ2t) = N (λ2t), (6.93)

on (0, 2α/λ2). Let, for any λ ∈ (0,
√
T0) and for any t ∈ (0, T/T0),

Wλ(z, t) := V (z, λ2t)√
H(λ2)

. (6.94)

In particular we note that 1 ∈ (0, T/T0). Similarly, we define

wλ(z, t) := v(z, λ2t)√
H(λ2)

for any t ∈ (0, T/T0). From (6.90) and (6.94) we deduce that Wλ belongs to L2((τ, T/λ2),H)
for all 0 < τ < T/λ2 and solves (6.91).

Proposition 6.6.1. Let T0 be as in (6.86). Then

{Wλ}λ∈(0,
√

T0) is bounded in L∞((τ, 1),H) for any τ ∈ (0, 1), (6.95)

and
{(Wλ)t}λ∈(0,

√
T0) is bounded in L∞((τ, 1),H∗) for any τ ∈ (0, 1). (6.96)

Moreover

{Wλ}λ∈(0,
√

T0) is relatively compact in C0([τ, 1],L) for any τ ∈ (0, 1). (6.97)

Proof. From Proposition 6.5.3, for any t ∈ (0, 1),∫
RN+1

+

y1−2sW 2
λ (z, t)G(z) dz = H(λ2t)

H(λ2) ≤ t2CN,s,+µ− N−2+2s
2 . (6.98)

Furthermore, by (6.38), (6.81), and (6.93)

1
t

(
−N + 2 − 2s

4 + C2

(
N (T0) + N + 2 − 2s

4

))
Hλ(t) ≥ λ2D(λ2t)

≥ 1
t

(
−N + 2 − 2s

4 + CN,s,µ

)
Hλ(t) + 1

t
CN,s,µ

∫
RN+1

+

y1−2s|∇Vλ(z, t)|2G(z) dz,

for all λ ∈ (0,
√
T0) and a.e. t ∈ (0, 1). It follows that, taking into account (6.98),∫

RN+1
+

y1−2s|∇Vλ(z, t)|2G(z) dz

≤ C−1
N,s,h

(
C2

(
N (T0) + N + 2 − 2s

4

)
− CN,s,µ

)∫
RN+1

+

y1−2sV 2
λ (z, t)G(z) dz

≤ C−1
N,s,h

(
C2

(
N (T0) + N + 2 − 2s

4

)
− CN,s,µ

)
t2CN,s,µ− N−2+2s

2 H(λ2) (6.99)
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for a.e. t ∈ (0, 1). Hence we have proved (6.95) in view of (6.98) and (6.99).
To prove (6.96), we note that, from (6.94),

(Wλ)t = λ2√
H(λ2)

Vt(z, λ2t).

To estimate ∥(Wλ)t(·, t)∥H∗ , we observe that, for any ϕ ∈ H,

λ2st−1+s

∣∣∣∣∫
RN

h(λ
√
tx, λ2t)wλ(x, t) Trϕ(x)G(x, 0) dx

∣∣∣∣
≤ Cgλ

2st−1+s
∫
RN

|wλ(x, t)|| Trϕ(x)|G(x, 0) dx

+ Cgλ
εt−1+ε/2

∫
RN

|x|−2s+ε|wλ(x, t)|| Trϕ(x)|G(x, 0) dx

≤ CgKN,sλ
2st−1+s ∥Wλ(·, t)∥H ∥ϕ∥H

+ Cgλ
εt−1+ε/2

∫
{|x|≤1}

|x|−2s|wλ(x, t)|| Trϕ(x)|G(x, 0) dx

+ Cgλ
εt−1+ε/2

∫
{|x|≥1}

|wλ(x, t)|| Trϕ(x)|G(x, 0) dx

≤ Cg λ
ε

t1−ε/2KN,st
s−ε/2λ2s−ε ∥Wλ(·, t)∥H ∥ϕ∥H

+ Cg λ
ε

t1−ε/2

(
κ−1

s Λ−1
N,s max

{
1, N+2−2s

4

}
+KN,s

)
∥Wλ(·, t)∥H ∥ϕ∥H , (6.100)

for any λ ∈ (0,
√
T0) and a.e. t ∈ (0, 1), thanks to (6.4), (6.33), (6.35), (6.41) and the Hölder

inequality. Then, by (6.35) and (6.100),

| H∗⟨(Wλ)t(·, t), ϕ⟩H| ≤
(

1 + µκ−1
s Λ−1

N,s max
{

1, N+2−2s
4

}

+ CgT
ε/2
0

(
KN,sT

2s−ε
2

0 + κ−1
s Λ−1

N,s max
{

1, N+2−2s
4

}
+KN,s

))∥Wλ(·, t)∥H ∥ϕ∥H
t

.

Hence
∥(Wλ)t(·, t)∥H∗ ≤ const

t
∥Wλ(·, t)∥H ,

so that (6.96) follows from (6.95).
Finally, in view of (6.95) and (6.96), we can apply [119, Corollary 8] to obtain (6.97).

Proposition 6.6.2. Let V be a solution to (6.49) such that V ̸≡ 0 in RN+1
+ × (0, T ) and let

γ be as in (6.87). Then γ is an eigenvalue of problem (6.12). Furthermore, for any sequence
λn → 0+, there exist a subsequence λnk

→ 0+ and an eigenfunction Y of problem (6.12)
associated to γ such that ∥Y ∥L = 1 and, for any τ ∈ (0, 1),

lim
k→∞

∫ 1

τ

∥∥∥∥∥∥V (z, λ2
nk
t)√

H(λ2
nk

)
− tγY (z)

∥∥∥∥∥∥
2

H

dt = 0,

lim
k→∞

sup
t∈[τ,1]

∥∥∥∥∥∥V (z, λ2
nk
t)√

H(λ2
nk

)
− tγY (z)

∥∥∥∥∥∥
L

= 0.
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Proof. Let λn → 0+. By Proposition 6.6.1, there exists a subsequence λnk
→ 0+ and W̃ ∈

∩τ∈(0,1)(C0([τ, 1],L) ∩ L2((τ, 1),H)) such that W̃t ∈ ∩τ∈(0,1)L
2((τ, 1),H∗),

Wλnk
⇀ W̃ weakly in L2((τ, 1),H), (Wλnk

)t ⇀ W̃t weakly in L2((τ, 1),H∗), (6.101)

and
Wλnk

→ W̃ strongly in C0([τ, 1],L), (6.102)
as k → +∞, for any τ ∈ (0, 1). Since, by (6.94),∥∥∥Wλnk

(·, 1)
∥∥∥

L
= 1,

from (6.102) we obtain that ∥∥∥W̃ (·, 1)
∥∥∥

L
= 1, (6.103)

hence W̃ ̸≡ 0. Now we claim that

Wλnk
→ W̃ strongly in L2((τ, 1),H) for any τ ∈ (0, 1). (6.104)

Thanks to (6.100) and (6.101), we can pass to the limit in (6.91) thus obtaining, for any
ϕ ∈ H and a.e. t ∈ (0, 1),

H∗

〈
(W̃ )t(·, t), ϕ

〉
H

= 1
t

∫
RN+1

+

y1−2s∇W̃ (z, t) · ∇ϕ(z)G(z) dz

− 1
t

∫
RN

µ

|x|2s
w̃(x, t) Trϕ(x)G(x, 0) dx, (6.105)

where w̃(·, t) := Tr(W̃ (·, t)). Testing the difference between (6.91) and (6.105) with (Wλnk
−

W̃ ), integrating between τ and 1, and taking into account Remark 6.3.3, we obtain that∫ 1

τ

(∫
RN+1

+

y1−2s|∇W̃ − ∇Wλnk
|2Gdz

)
dt

−
∫ 1

τ

(∫
RN

µ

|x|2s
|w̃(x, t) − wλnk

(x, t)|2G(x, 0) dx
)
dt

= 1
2

∥∥∥W̃ (·, 1) −Wλnk
(·, 1)

∥∥∥2

L
− τ

2

∥∥∥W̃ (·, τ) −Wλnk
(·, τ)

∥∥∥2

L

− 1
2

∫ 1

τ

(∫
RN+1

+

y1−2s|W̃ −Wλnk
|2Gdz

)
dt

+ λ2s
∫ 1

τ

(∫
RN

tsh(λ
√
tx, λ2t)wλnk

(x, t)(wλnk
(x, t) − w̃(x, t))G(x, 0) dx

)
dt.

Then by (6.100), (6.101) and (6.102) we conclude that

lim
k→0+

(∫ 1

τ

(∫
RN+1

+

y1−2s
(

|∇W̃ − ∇Wλnk
|2 + 1

2 |W̃ −Wλnk
|2
)
Gdz

)
dt

−
∫ 1

τ

(∫
RN

µ

|x|2s
|w̃(x, t) − wλnk

(x, t)|2G(x, 0) dx
)
dt

)
= 0.
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Thanks to Proposition 6.2.7 with f ≡ 0 and (6.102), we conclude that (6.104) holds. There-
fore, for any τ ∈ (0, 1),

lim
k→∞

∫ 1

τ

∥∥∥Wλnk
(·, t) − W̃ (·, t)

∥∥∥2

H
dt = 0 (6.106)

and, by (6.102),
lim

k→∞
sup

t∈[τ,1]

∥∥∥Wλnk
(·, t) − W̃ (·, t)

∥∥∥2

L
dt = 0.

Let us define, for any t ∈ (0, 1),

H
W̃

(t) :=
∫
RN+1

+

y1−2sW̃ 2Gdz,

D
W̃

(t) := 1
t

(∫
RN+1

+

y1−2s|∇W̃ |2Gdz −
∫
RN

µ

|x|2s
w̃2(x, t)G(x, 0) dx

)
.

Since H
W̃

(1) = ∥W̃ (·, 1)∥2
L = 1 by (6.103), then

H
W̃

(t) > 0 for any t ∈ (0, 1)

as we can prove arguing as in Proposition 6.5.9. Hence the function

N
W̃

: (0, 1) → R, N
W̃

(t) :=
tD

W̃
(t)

H
W̃

(t)

is well defined. Furthermore, from (6.92) and (6.94) , it follows that

Nλ(t)

=

∫
RN+1

+
y1−2s|∇Wλ|2Gdz −

∫
RN

(
µ

|x|2sw
2
λ(x, t) + λ2stsh(λ

√
tx, λ2t)w2

λ(x, t)
)
G(x, 0) dx∫

RN+1
+

y1−2sW 2
λ (z, t)Gdz

.

Then, from (6.35), (6.100), and (6.106) we deduce that

lim
k→∞

Nλnk
(t) = N

W̃
(t) for a.e. t ∈ (0, 1).

On the other hand, Nλnk
(t) = N (λ2

nk
t) for any t ∈ (0, 1) by (6.93) and hence

N
W̃

(t) = lim
k→∞

Nλnk
(t) = lim

k→∞
N (λ2

nk
t) = γ for any t ∈ (0, 1),

with γ as in (6.87). It follows that N ′
W̃

(t) ≡ 0 in (0, 1). In view of Proposition 6.5.6 in the
case h ≡ 0, we deduce that(∫

RN+1
+

y1−2sW̃ 2
t Gdz

)(∫
RN+1

+

y1−2sW̃ 2Gdz

)
=
(∫

RN+1
+

y1−2sW̃tW̃Gdz

)2

for a.e. t ∈ (0, 1). In particular, for the vectors W̃t(·, t) and W̃ (·, t) in L, equality holds in the
Cauchy-Schwarz inequality for a.e. t ∈ (0, 1). Hence there exists a function β : (0, 1) → R
such that

W̃t(z, t) = β(t)W̃ (z, t) for a.e. z ∈ RN+1
+ and a.e. t ∈ (0, 1). (6.107)
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Thanks to (6.73) and Remark 6.3.5,

D
W̃

(t) =
H∗

〈
(W̃ )t(·, t), W̃ (·, t)

〉
H

= β(t)H
W̃

(t),

and so
β(t) = γ

t
for a.e. t ∈ (0, 1). (6.108)

Combining (6.105), (6.107) and (6.108), we conclude that W̃ satisfies

γ

∫
RN+1

+

y1−2sW̃ϕGdz =
∫
RN+1

+

y1−2s∇W̃ · ∇ϕGdz −
∫
RN

µ

|x|2s
w̃ϕG(x, 0) dx, (6.109)

for all ϕ ∈ H and a.e. t ∈ (0, 1).
Furthermore from (6.107) it follows that, letting W̃ η(z, t) := W̃ (z, η2t) for any η > 0,

dW̃ η

dη
(z, t) = 2γ

η
W̃ η(z, t) in a distributional sense and a.e. in RN+1

+ × (0, 1).

An integration yields

W̃ η(z, t) = η2γW̃ (z, t) for all η > 0 and a.e. in RN+1
+ × (0, 1).

Let Y (z) := W̃ (z, 1). Then ∥Y ∥L = 1 and

W̃ (z, t) = W̃
√

t (z, 1) = tγY (z) for a.e. z ∈ RN+1
+ and a.e. t ∈ (0, 1). (6.110)

Moreover, from (6.109) and (6.110), Y ∈ H and Y satisfies

γ

∫
RN+1

+

y1−2sY ϕGdz =
∫
RN+1

+

y1−2s∇Y · ∇ϕGdz −
∫
RN

µ

|x|2s
Tr(Y ) Tr(ϕ)G(x, 0) dx

for any ϕ ∈ C∞
c (RN+1

+ ), i.e. γ is an eigenvalue of problem (6.12) and Y is an associated
eigenfunction. The proof is then complete.

Now we study the asymptotic behavior of H(t) as t → 0+.

Proposition 6.6.3. Let γ be as in (6.87). Then the limit limt→0+ t−2γH(t) exists and it is
finite.

Proof. Thanks to (6.88), we only need to show that the limit exists. By (6.73), Proposition
6.5.6, and (6.87),

d

dt
(t−2γH(t)) = −2γt−2γ−1H(t) + t−2γH ′(t) = 2t−2γ−1(tD(t) − γH(t))

= 2t−2γ−1H(t)
∫ t

0
(ν1(τ) + ν2(τ)) dτ

for a.e. t ∈ (0, T0), where ν1 and ν2 have been defined in (6.85). An integration over (t, T0)
yields

H(T0)
T 2γ

0
− H(t)

t2γ
=
∫ T0

t
2ρ−2γ−1H(ρ)

(∫ ρ

0
ν1(τ)dτ

)
dρ+

∫ T0

t
2ρ−2γ−1H(ρ)

(∫ ρ

0
ν2(τ)dτ

)
dρ.
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Since by Proposition 6.5.6 it follows that ν1 ≥ 0, then the function

t →
∫ T0

t
2ρ−2γ−1H(ρ)

(∫ ρ

0
ν1(τ)dτ

)
dρ

is non-increasing on (0, T0) and it has a limit as t → 0+. From (6.3), (6.41), Proposition 6.5.7
and Proposition 6.5.8 we deduce that∣∣∣∣∫ ρ

0
ν2(τ)dτ

∣∣∣∣ ≤ const ρδ,

where δ := min{ ε
2 , 1 − 1

r }. Then by (6.88)∣∣∣∣2ρ−2γ−1H(ρ)
(∫ ρ

0
ν2(τ)dτ

)
dρ

∣∣∣∣ ≤ const ρ−1+δ

hence the function
ρ → 2ρ−2γ−1H(ρ)

(∫ ρ

0
ν2(τ)dτ

)
dr

belongs to L1(0, T0). We conclude that limit limt→0+ t−2γH(t) exists.

Proposition 6.6.4. Let γ be as in (6.87). Then limt→0+ t−2γH(t) > 0.

Proof. We argue by contradiction assuming that limt→0+ t−2γH(t) = 0.
Since Vλ(z, 1) = V (z, λ2) ∈ H and h(λx, λ2) Tr(Vλ)(x, 1) ∈ H∗ for a.e. λ ∈ (0,

√
T0), by

Proposition 6.1.5 we can expand them in L and H∗ respectively as

Vλ(z, 1) =
∑

(n,j)∈N×(N\{0})
Vn,j(λ)Ỹn,j(z) in L,

h(λx, λ2) Tr(Vλ)(x, 1) =
∑

(n,j)∈N×(N\{0})
ξn,j(λ)Ỹn,j(z) in H∗,

where

Vn,j(λ) :=
∫
RN+1

+

y1−2sVλ(z, 1)Ỹn,j(z)G(z) dz, (6.111)

ξn,j(λ) :=
H∗

〈
h(λ·, λ2) Tr(Vλ)(·, 1), Ỹn,j

〉
H

=
∫
RN
h(λx, λ2)vλ(x, 1) Tr(Ỹn,j)G(x, 0) dx, (6.112)

for a.e. λ ∈ (0,
√
T0). By Parseval’s identity

H(λ2) =
∑

(m,i)∈N×(N\{0})
(Vm,i(λ))2 ≥ (Vn,j(λ))2

for any λ ∈ (0, T0) and (n, j) ∈ N × (N \ {0}). Hence, from limt→0+ t−2γH(t) = 0 we deduce
that

lim
λ→0+

λ−2γVn,j(λ) = 0 for any (n, j) ∈ N × (N \ {0}). (6.113)

By (6.90), Remarks 6.3.3, 6.3.5, and Proposition 6.3.6, it is easy to see that, for any (n, j) ∈
N × (N \ {0}), Vn,j is absolute continuous on any closed sub-interval of (0,

√
T0) and

d

dλ
Vn,j(λ) =

H∗

〈
d

dλ
Vλ(·, 1), Ỹn,j

〉
H

=
(
d

dλ
Vλ(·, 1), Ỹn,j

)
L

= 2λ
(
Vt(·, λ2), Ỹn,j

)
L
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a.e. and in a distributional sense in (0,
√
T0). Furthermore, for any (n, j) ∈ N × (N \ {0}),

since Ỹn,j is an eigenfunction of problem (6.12) we have that

2λ
∫
RN+1

+

y1−2sVt(z, λ2)Ỹn,j(z)G(z) dz = 2
λ

(∫
RN+1

+

y1−2s∇V (·, λ2) · ∇Ỹn,j Gdz

−
∫
RN

(
µ

|x|2s
v(x, λ2) Tr(Ỹn,j) + λ2sh(λx, λ2)v(x, λ2) Tr(Ỹn,j)

)
G(x, 0) dx

)

= 2
λ
γn,j

∫
RN+1

+

y1−2sV (·, λ2)Ỹn,jGdz

− 2λ2s−1
∫
RN

h(λx, λ2)v(x, λ2) Tr(Ỹn,j)G(x, 0) dx = 2
λ
γn,jVn,j(λ) − 2λ2s−1ξn,j(λ),

for a.e. λ ∈ (0,
√
T0), by (6.49), (6.111) and (6.112). In conclusion we have proved that, for

any (n, j) ∈ N × (N \ {0}),

d

dλ
Vn,j(λ) = 2

λ
γn,jVn,j(λ) − 2λ2s−1ξn,j(λ)

for a.e. λ ∈ (0,
√
T0) and in a distributional sense. An integration yields

Vn,j(λ̄) = λ̄
2γn,j

(
λ−2γn,jVn,j(λ) + 2

∫ λ

λ̄
τ2s−1−2γn,jξn,j(τ) dτ

)
(6.114)

for any λ̄, λ ∈ (0,
√
T0).

Thanks to Proposition 6.6.2, there exists an eigenvalue γm0,k0 of (6.12) such that γ =
γm0,k0 . Then, for any (n, j) ∈ J0 (see (6.26)), we can estimate ξn,j as follows. From the
Hölder inequality, the fact that Ỹn,j ∈ H, (6.38), and (6.39) it follows that

λ2s|ξn,j(λ)| = λ2s

∣∣∣∣∫
RN

h(λx, λ2)v(x, λ2) Tr(Ỹn,j)(x)G(x, 0) dx
∣∣∣∣ (6.115)

≤
(∫

RN
λ2s|h(λx, λ2)||v(x, λ2)|2G(x, 0)dx

)1
2
(∫

RN
λ2s|h(λx, λ2)|| Tr(Ỹn,j)|2G(x, 0)dx

)1
2

≤ constλε+2γ

for any λ ∈ (0,
√
T0), where Proposition 6.5.8 and (6.88) have been used.

It follows that τ → τ2s−1−2γξn,j(τ) belongs to L1(0,
√
T0) for any (n, j) ∈ J0. Passing to

the limit as λ̄ → 0+ in (6.114), from (6.113) we deduce that

Vn,j(λ) = −2λ2γ
∫ λ

0
τ2s−1−2γξn,j(τ) dτ for any (n, j) ∈ J0. (6.116)

Combining (6.115) and (6.116) we obtain that

|Vn,j(λ)| ≤ constλε+2γ for any λ ∈ (0,
√
T0) and some const > 0 independent of λ.

Fixing some σ ∈ (0, ε), by (6.89) there exists a constant K(σ) > 0 such that, for any λ ∈
(0,

√
T0),

H(λ2) ≥ K(σ)λ2(2γ+σ).
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We conclude that
|Vn,j(λ)|√
H(λ2)

= O
(
λε−σ) = o(1) as λ → 0+. (6.117)

On the other hand, for any sequence λi → 0+, Proposition 6.6.2 provides a subsequence
λik

→ 0+ and an eigenfunction Y of (6.12) associated to the eigenvalue γ such that

Vλik
(·, 1)√

H(λ2
ik

)
→ Y strongly in L as k → ∞.

In particular, for any (n, j) ∈ J0,

Vn,j(λik
)√

H(λ2
ik

)
=

Vλik
(·, 1)√

H(λ2
ik

)
, Ỹn,j


L

→
(
Y, Ỹn,j

)
L

as k → ∞. (6.118)

From (6.117) and (6.118) we deduce that (Y, Ỹn,j)L = 0 for any (n, j) ∈ J0. We conclude that
Y ≡ 0, a contradiction.

Proof of Theorems 6.1.6 and 6.1.7. In view of Proposition 6.6.2, there exists an eigen-
value γm0,k0 of problem (6.12) such that (6.25) holds. Let J0 be as in (6.26) and λi → 0+

as i → +∞. Thanks to Proposition 6.6.2 and Proposition 6.6.4 there exists a subsequence
{λik

}k∈N and real numbers {βn,j : (n, j) ∈ J0} such that βñ,j̃ ̸= 0 for some (ñ, j̃) ∈ J0 and,
for any τ ∈ (0, 1),

lim
k→∞

∫ 1

τ

∥∥∥∥∥∥λ−2γm0,k0
ik

V (z, λ2
ik
t) − tγm0,k0

∑
(n,j)∈J0

βn,j Ỹn,j(z)

∥∥∥∥∥∥
2

H

dt = 0 (6.119)

and

lim
k→∞

sup
t∈[τ,1]

∥∥∥∥∥∥λ−2γm0,k0
ik

V (z, λ2
ik
t) − tγm0,k0

∑
(n,j)∈J0

βn,j Ỹn,j(z)

∥∥∥∥∥∥
2

L

= 0. (6.120)

It follows that

λ
−2γm0,k0
ik

V (z, λ2
ik

) →
∑

(n,j)∈J0

βn,j Ỹn,j(z) strongly in L as k → ∞. (6.121)

Let us prove that {βn,j : (n, j) ∈ J0} depends neither on the sequence {λi}i∈N nor on its
subsequence {λik

}k∈N. Let Λ ∈ (0,
√
T0) and let Vn,j , ξn,j be as in (6.111) and (6.112)

respectively. From (6.121) we obtain that, for any (n, j) ∈ J0,

λ
−2γm0,k0
ik

Vn,j(λik
) → βn,j as k → ∞.

By (6.114), for any (n, j) ∈ J0 and λ ∈ (0,Λ),

Vn,j(λ) = λ2γm0,k0

(
Λ−2γm0,k0Vn,j(Λ) + 2

∫ Λ

λ
τ2s−1−2γm0,j0 ξn,j(τ) dτ

)
.
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Furthermore, proceeding as in Proposition 6.6.4, we can prove that τ → τ2s−1−2γm0,j0 ξn,j(τ)
belongs to L1(0,

√
T0). Hence

βn,j = Λ−2γm0,k0Vn,j(Λ) + 2
∫ Λ

0
τ2s−1−2γm0,j0 ξn,j(τ) dτ

= Λ−2γm0,k0

∫
RN+1

+

y1−2sV (z,Λ2)Ỹn,j(z)G(z) dz

+ 2
∫ Λ

0
τ2s−1−2γm0,k0

(∫
RN

h(τx, τ2)v(x, τ2) Tr(Ỹn,j)(x)G(x, 0) dx
)
dτ,

so that βn,j depends neither on the sequence {λi}i∈N nor on its subsequence {λik
}k∈N for any

(n, j) ∈ J0. Then, by the Urysohn subsequence principle, we conclude that the convergences
in (6.119) and (6.120) actually hold as λ → 0+, thus proving Theorem 6.1.6. Theorem
6.1.7 follows from Theorem 6.1.6 and the continuity of the trace operator Tr from H into
L2(RN , G(x, 0)), see Proposition 6.2.3.

The strong unique continuation principles stated in Corollaries 6.1.8 and 6.1.9 easily follow
from Theorem 6.1.6 and Theorem 6.1.7.

Proof of Corollaries 6.1.8 and 6.1.9. We start by proving Corollary 6.1.8. Let us as-
sume by contradiction that W ̸≡ 0 on RN+1

+ × (−T, 0) and let γm0,k0 be as in Theorem 6.1.6.
In view of (6.28) we have that

lim
λ→0+

λ−2γm0,k0 t−γm0,k0W (λz
√
t,−λ2t) = 0 for a.e. (z, t) ∈ RN+1

+ × (0, 1).

On the other hand, by Theorem 6.1.6 there exists Y ∈ H\{0} such that Y is an eigenfunction
of problem (6.12) and, for a.e. z ∈ RN+1

+ and t ∈ (0, 1),

lim
n→∞

λ
−2γm0,k0
n t−γm0,k0W (λnz

√
t,−λ2

nt) = Y (z),

along a sequence λn → 0+. We conclude that Y ≡ 0, thus reaching a contradiction. In the
same way, we can deduce Corollary 6.1.9 from Theorem 6.1.7, in view of Proposition 6.4.4.
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Part III

Spectral Stability for
Aharonov-Bohm operators
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Chapter 7

Quantitative spectral stability for
Aharonov-Bohm operators with
many coalescing poles

7.1 Statement of the main results
To give a variational formulation of problem (1.9), we introduce the space H1,ε(Ω,C), defined
as the completion of

{ϕ ∈ H1(Ω,C) ∩ C∞(Ω,C) : ϕ ≡ 0 in a neighbourhood of aj
ε for all j = 1, . . . , k}

with respect to the norm

∥w∥H1,ε(Ω,C) :=
(

∥w∥2
L2(Ω,C) + ∥∇w∥2

L2(Ω,C2) +
k∑

j=1

∥∥∥ w

|·−aj
ε|

∥∥∥2

L2(Ω,C)

)1/2
. (7.1)

We observe that H1,ε(Ω,C) =
{
u ∈ H1(Ω,C) : u

|·−aj
ε|

∈ L2(Ω,C) for all j = 1, . . . , k
}

.
In [95] (see also [15] and [66, Lemma 3.1, Remark 3.2]), the following local magnetic

Hardy-type inequality∫
Br(b)

|i∇w +Aρ
bw|2 dx ≥

(
min
j∈Z

|j − ρ|
)2 ∫

Br(b)

|w(x)|2

|x− b|2
dx

is proved for every b ∈ R2 and w ∈ C∞
c (Br(b) \ {b},C). It follows that the norm (7.1) is

equivalent to the norm (
∥(i∇ + Aε)u∥2

L2(Ω,C2) + ∥u∥2
L2(Ω,C)

)1/2
.

To deal with homogeneous Dirichlet boundary conditions, we introduce the space H1,ε
0 (Ω,C)

defined as the closure of C∞
c (Ω \ {a1

ε, . . . , a
k
ε}) in H1,ε(Ω,C). The space H1,ε

0 (Ω,C) can be
explicitly characterized as

H1,ε
0 (Ω,C) =

{
w ∈ H1

0 (Ω,C) : w

|·−aj
ε|

∈ L2(Ω,C) for all j = 1, . . . , k
}
.
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Figure 7.1: The sets Γε, Γ0, Sj
ε (1 ≤ j ≤ k1 + k2).

We say that λ ∈ R is an eigenvalue of (1.9) if there exists u ∈ H1,ε
0 (Ω,C) \ {0} (called

eigenfunction) such that∫
Ω

(i∇ + Aε)u · (i∇ + Aε)w dx = λ

∫
Ω
uw dx for all w ∈ H1,ε

0 (Ω,C). (7.2)

We recall from the introduction that the eigenvalue problem (1.9) (and hence (7.2)) admits
a diverging sequence of real positive eigenvalues

λε,1 ≤ λε,2 ≤ λε,3 ≤ · · · ,

repeated in the enumeration according to their multiplicity.
In a similar way, the variational formulation of (1.10) in the case k odd (corresponding

to a problem of type (1.9) with only one pole located at 0) can be be given in the functional
space {w ∈ H1

0 (Ω,C) : w
|x| ∈ L2(Ω,C)}. In the case k even, instead, (1.10) takes the form of

the classical eigenvalue problem for the Dirichlet Laplacian, whose variational formulation is
well known. In both cases, (1.10) admits a diverging sequence of real positive eigenvalues

λ0,1 ≤ λ0,2 ≤ λ0,3 ≤ · · · ,

repeated according to their multiplicity.
A suitable gauge transformation allows us to obtain equivalent formulations of (1.9) and

(1.10) as eigenvalue problems for the Laplacian in domains with straight cracks. For every
ε ∈ [0, 1] we define

Σj := {taj : t ∈ R} for all j = 1, . . . , k1 + k2,

Γj
ε := {taj : t ∈ (−∞, ε]}, Sj

ε := {taj : t ∈ [0, ε]} for all j = 1, . . . , k1,

Sj
ε := {taj + (ε− t)aj+k2 : t ∈ [0, ε]} for all j = k1 + 1, . . . , k1 + k2,

Γε :=
( k1⋃

j=1
Γj

ε

)
∪
( k1+k2⋃

j=k1+1
Sj

ε

)
,

see 7.1. We note that, for every j = 1, . . . , k1, Γj
0 = Γj

ε \ Sj
ε is the straight half-line starting

at 0 with slope αj + π. For every ε ∈ [0, 1], we consider the functional space Hε defined as
the closure of{

w ∈ H1(Ω \ Γε) = H1(Ω \ Γε,R) : w = 0 on a neighbourhood of ∂Ω
}
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in H1(Ω \ Γε) endowed with the norm ∥w∥H1(Ω\Γε) = ∥∇w∥L2(Ω\Γε) + ∥w∥L2(Ω). From the
Poincaré type inequality stated in Proposition 7.2.2, it follows that

∥w∥Hε
:=
(∫

Ω\Γε

|∇w|2 dx
)1/2

is a norm on Hε equivalent to ∥w∥H1(Ω\Γε). The corresponding scalar product is denoted as
(·, ·)Hε .

For every j = 1, . . . , k1 + k2, with the notation νj :=
(

− sin(αj), cos(αj)
)

we consider the
half-planes

πj
+ := {x ∈ R2 : x · νj > 0} and πj

− := {x ∈ R2 : x · νj < 0}.

We observe that νj is the unit outer normal vector to πj
− on ∂πj

−. In view of classical
trace results and embedding theorems for fractional Sobolev spaces in dimension 1, for every
j = 1, . . . , k1 + k2 and p ∈ [2,+∞) there exist continuous trace operators

γj
+ : H1(πj

+ \ Γ1) → Lp(Σj) and γj
− : H1(πj

− \ Γ1) → Lp(Σj). (7.3)

We also define the trace operators

T j : H1(R2 \ Γ1) → Lp(Σj), T j(w) := γj
+(w|

πj
+

) + γj
−(w|

πj
−

), (7.4)

for every j = 1, . . . , k1 + k2 and p ∈ [2,+∞). For every ε ∈ [0, 1], the restrictions to Hε of the
operators γj

+, γ
j
− and T j are linear and continuous, since any element of Hε can be trivially

extended by 0 to an element of H1(R2 \ Γ1); furthermore, due to the boundedness of Ω, such
restrictions are continuous and compact from Hε into Lp(Σj ∩ Ω) for all p ∈ [1,+∞).

For every ε ∈ (0, 1], we define the space

H̃ε :=
{
w ∈ Hε : T j(w) = 0 on Γj

ε for all j = 1, . . . , k1,

T j(w) = 0 on Sj
ε for all j = k1 + 1, . . . , k1 + k2

}
, (7.5)

and, for ε = 0,

H̃0 :=
{
w ∈ H0 : T j(w) = 0 on Γj

0 for all j = 1, . . . , k1
}
. (7.6)

In Section 7.2.3 we construct a function

Θε : R2 \ {aj
ε : j = 1, . . . , k} → R (7.7)

such that{
Θε ∈ C∞(R2 \ Γε)
∇Θε can be extended to be in C∞(R2 \ {aj

ε : j = 1, . . . , k}) with ∇Θε = Aε,
(7.8)

see (7.46) for the definition of Θε. The phase multiplication

u(x) 7→ v(x) := e−iΘε(x)u(x), x ∈ Ω \ Γε, (7.9)
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transforms any solution u to problem (1.9) into a solution v to

−∆v = λv, in Ω \ Γε,

v = 0, on ∂Ω,
T j(v) = 0, on Γj

ε for all j = 1, . . . , k1,

T j(∇v · νj) = 0, on Γj
ε for all j = 1, . . . , k1,

T j(v) = 0, on Sj
ε for all j = k1 + 1, . . . , k1 + k2,

T j(∇v · νj) = 0, on Sj
ε for all j = k1 + 1, . . . , k1 + k2,

(7.10)

In (7.48) we also define a function

Θ0 : R2 \ {0} → R (7.11)

satisfyingΘ0 ∈ C∞(R2 \ Γ0)
∇Θ0 can be extended to be in C∞(R2 \ {0}) with ∇Θ0 = 1+(−1)k+1

2 A0.
(7.12)

The gauge transformation

u(x) 7→ v(x) := e−iΘ0(x)u(x), x ∈ Ω \ Γ0, (7.13)

shows that the limit eigenvalue problem (1.10) is equivalent to
−∆v = λv, in Ω \ Γ0,

v = 0, on ∂Ω,
T j(v) = 0, on Γj

0 for all j = 1, . . . , k1,

T j(∇v · νj) = 0, on Γj
0 for all j = 1, . . . , k1,

(7.14)

in the sense that the two problems have the same eigenvalues and their eigenfunctions match
each other via the phase multiplication (7.13), see Section 7.2.3 for details. Therefore, under
assumption (1.15), λ0,n0 is also a simple eigenvalue of (7.14). Let

v0 be an eigenfunction of (7.14) associated to λ0,n0 such that ∥v0∥L2(Ω) = 1; (7.15)

it is not restrictive to assume that v0 is real-valued, see Remark 7.2.5. Once v0 is fixed as
above, for every ε ∈ (0, 1] we define

Lε : H1 → R, Lε(w) := 2
k1+k2∑

j=1

∫
Sj

ε

∇v0 · νjγj
+(w) dS (7.16)

and
Jε : Hε → R, Jε(w) := 1

2

∫
Ω\Γε

|∇w|2 dx+ Lε(w). (7.17)

As proved in Proposition 7.3.2, for every ε ∈ (0, 1] there exists a unique Vε ∈ Hε such that

Vε − v0 ∈ H̃ε and Jε(Vε) = min
{
Jε(w) : w ∈ Hε and w − v0 ∈ H̃ε

}
. (7.18)

Our first main result is the following expansion of the eigenvalue variation λε,n0 − λ0,n0 in
terms of

Eε = Jε(Vε) (7.19)
and Lε(v0).
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Theorem 7.1.1. Under assumption (1.15), let v0 be as in (7.15). Then

λε,n0 − λ0,n0 = 2(Eε − Lε(v0)) + o
(
∥Vε∥2

Hε

)
as ε → 0+, (7.20)

where Eε and Vε are defined in (7.19) and (7.18), respectively.

7.1.1 The case k odd

For k odd, the asymptotic behaviour of Eε as ε → 0+ can be quantified in terms of the
vanishing order of v0 at the collision point 0. Indeed, as detailed in Proposition 7.2.6, if k is
odd, there exists β ∈ R \ {0} such that, as ε → 0+,

ε− m
2 v0

(
ε cos t, ε sin t

)
→ β f(t) sin

(
m
2 (t− α0)

)
(7.21)

in C1,τ
(
[0, 2π] \ {αj + π}k1

j=1,R
)

for all τ ∈ (0, 1), where m ∈ N is odd and corresponds to
the number of nodal lines of v0 meeting at 0 (which equals the number of nodal lines of
eigenfunctions of (1.10) associated to λ0,n0), α0 ∈

[
0, 2π

m

)
is the minimal slope of such nodal

lines, and

f : [0, 2π] → {−1, 1}, f(t) :=
k1∏

j=1
(−1)χ

[αj +π,2π)(t)
, (7.22)

where
χ[αj+π,2π)(t) :=

{
0, if t ∈ [0, αj + π),
1, if t ∈ [αj + π, 2π).

(7.23)

From (7.21) we realize that the m nodal lines of v0 which meet at 0 are tangent to the m
straight half-lines

Rj =
{(

cos
(
α0 + j 2π

m

)
, sin

(
α0 + j 2π

m

))
r : r ≥ 0

}
, j = 0, 1, . . . ,m− 1,

which divide the whole 2π-angle into m equal sectors. We define the functional space

X̃ :=
{
w ∈ L1

loc(R2) : w ∈ H1(Br \ Γ1) for all r > 0,
∇w ∈ L2(R2 \ Γ1,R2), T j(w) = 0 on Γj

0 for j = 1, . . . , k1

}
, (7.24)

and consider its closed subspace

H̃ := {w ∈ X̃ : T j(w) = 0 on Sj
1 for any j = 1, . . . , k1 + k2}. (7.25)

Letting
Ψ0(x) = Ψ0(r cos t, r sin t) = β r

m
2 f(t) sin

(
m
2 (t− α0)

)
(7.26)

with f , m, β, and α0 as in (7.21), we observe that the nodal set of Ψ0 is given by
⋃m−1

j=0 Rj .
We define

L : X̃ → R, L(w) := 2
k1+k2∑

j=1

∫
Sj

1

∇Ψ0 · νjγj
+(w) dS (7.27)

and
J : X̃ → R, J(w) := 1

2

∫
R2\Γ1

|∇w|2 dx+ L(w). (7.28)
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We observe that L(w) is well-defined also for any function w ∈ H1(D1 \ Γ1).
Let η ∈ C∞

c (R2) be a radial cut-off function such that
0 ≤ η(x) ≤ 1 for all x ∈ R2,

η(x) = 1 if x ∈ D1, η(x) = 0 if x ∈ R2 \D2,

|∇η| ≤ 2 in D2 \D1.

(7.29)

As proved in Proposition 7.5.4, there exists a unique Ṽ ∈ X̃ such that

Ṽ − ηΨ0 ∈ H̃ and J(Ṽ ) = min
{
J(w) : w ∈ X̃ and w − ηΨ0 ∈ H̃

}
. (7.30)

Theorem 7.1.2. Let k be odd. Under assumption (1.15), let v0 be as in (7.15). Then

(i) limε→0+ ε−mEε = E, where m is the vanishing order of v0 at 0 as in (7.21) and

E = J(Ṽ ) = min
ηΨ0+H̃

J ; (7.31)

(ii) λε,n0 − λ0,n0 = 2 εm
(
E − L(Ψ0)

)
+ o(εm) as ε → 0+.

The expansion proved in Theorem 7.1.2-(ii) identifies the sharp asymptotic behaviour of
the eigenvalue variation λε,n0 − λ0,n0 if E − L(Ψ0) ̸= 0; if instead E − L(Ψ0) = 0, Theorem
7.1.2-(ii) only provides the information that λε,n0 − λ0,n0 is an infinitesimal of higher order
than m. It is therefore natural to ask whether there are configurations of poles {aj} for which
the quantity E − L(Ψ0) does or does not vanish. The following proposition gives an answer
in this sense, also providing precise information on the sign of the eigenvalue variation in two
remarkable cases: the case in which each pole moves along the tangent to a nodal line of the
limit eigenfunction and the case in which each pole moves along the bisector between two
nodal lines.

Proposition 7.1.3. Let k = k1 ≤ m be odd and k2 = 0. Under assumption (1.15), let v0 be
as in (7.15) and α0 as in (7.21). For every j ∈ {1, . . . , k1} let αj be as in (1.6).

(i) If αj ∈ {α0 + ℓ2π
m : ℓ = 0, 1, 2, . . . ,m− 1} for all j ∈ {1, . . . , k1}, then

E < 0 and L(Ψ0) = 0;

furthermore, λε,n0 < λ0,n0 provided that ε > 0 is sufficiently small.

(ii) If αj ∈ {α0 + (1 + 2ℓ) π
m : ℓ = 0, 1, 2, . . . ,m− 1} for all j ∈ {1, . . . , k1}, then

E > 0 and L(Ψ0) = 0;

furthermore, λε,n0 > λ0,n0 provided that ε > 0 is sufficiently small.

(iii) There exists a choice of {αj : j = 1, . . . , k} such that E −L(Ψ0) = 0 and λε,n0 − λ0,n0 =
o(εm) as ε → 0+.
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The proof of claim (iii) in Proposition 7.1.3 is based on a continuity argument. Indeed,
the function E − L(Ψ0) varies continuously under rotations of the configuration of poles, see
Theorem 7.5.8. Hence (i) and (ii), together with Bolzano’s Theorem, guarantee the existence
of intermediate configurations for which E − L(Ψ0) vanishes. The proof of claims (i) and (ii)
highlights the fact that, analogously to Eε, also E represents an intermediate notion between
the capacity and the torsional rigidity of the set ∪k1

j=1S
j
1. Indeed, in case (i) it occurs that

E = min
w∈H̃

{
1
2

∫
R2\Γ1

|∇w|2 dx+ L(w)
}
< 0,

see (7.146), i.e. E is the minimum of a functional containing a (quadratic) energy term and
a linear one, over a linear space: this makes it somehow behaving like a torsional rigidity of
the set ∪k1

j=1S
j
1. On the other hand, in case (ii) we have the characterization

E = min
{

1
2

∫
R2\Γ1

|∇w|2 dx : w − ηΨ0 ∈ H̃
}
> 0,

see (7.147), which yields a notion resembling that of Ψ0-capacity of the set ∪k1
j=1S

j
1.

The proof of Theorem 7.1.2 is based on a blow-up analysis, which also provides the follow-
ing result on the behavior of eigenfunctions, characterizing their blow-up profile and quanti-
fying the convergence speed of the eigenfunctions of problem (1.9) towards the corresponding
eigenfunction of the limit problem (1.10).

Theorem 7.1.4. Let k be odd and n0 ∈ N \ {0} be such that (1.15) is satisfied. Let u0 be an
eigenfunction of (1.10) associated to λ0,n0 such that

∫
Ω |u0|2 dx = 1. For every ε ∈ (0, 1], let

uε ∈ H1,ε
0 (Ω,C) be the eigenfunction of (1.9) associated to the eigenvalue λn0,ε such that∫

Ω
|uε|2 dx = 1 and

∫
Ω
e−i(Θε−Θ0)uεu0 dx is a positive real number, (7.32)

where Θε and Θ0 are as in (7.7)–(7.8) and (7.11)–(7.12), respectively. Then

ε−m/2uε(ε ·) → eiΘ1(Ψ0 − Ṽ ) as ε → 0+ (7.33)

in H1,1(BR,C) for all R > 0, where Ṽ and Ψ0 are as in (7.30) and (7.26), respectively.
Moreover,

lim
ε→0+

ε−m
∫
R2\Γ1

∣∣∣e−i(Θε−Θ0)(i∇ + Aε)uε − (i∇ +A0)u0
∣∣∣2 dx = ∥∇Ṽ ∥2

L2(R2\Γ1). (7.34)

We observe that condition (7.32) allows us to identify, among all the eigenfunctions of
(1.9) associated to the eigenvalue λn0,ε (that are multiples of a given one due to the simplicity
of λn0,ε), the one that converges to u0 as ε → 0+.

7.1.2 The case of two opposite poles (k1 = 0, k2 = 1)
In the case of two opposite poles a1

ε, a2
ε = −a1

ε colliding to 0 from the two sides of the same
straight line, we can rewrite the terms appearing in (7.20) in elliptic coordinates in the spirit
of [3, Subsection 2.2], thus determining the dominant term in the asymptotic expansion. This
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allows us to generalize [5, Theorem 2.6, Theorem 2.8], see also [3, Theorem 1.16], removing
any symmetry assumption on the domain Ω. Let us assume that

the n0-th eigenvalue λn0 of the Dirichlet Laplacian in Ω is simple.

We recall that, since k is even in this case, λn0 = λ0,n0 coincides with the n0-th eigenvalue of
the limit problem (1.10). Let

u0 be an eigenfunction of (1.11) associated to λn0 = λ0,n0 such that
∫

Ω
u2

0 dx = 1. (7.35)

If u0(0) ̸= 0, then, for any bounded simply connected domain Ω, a sharp expansion of the
variation λε,n0 −λ0,n0 has already been obtained in [4, Theorem 1.2], see Remark 7.6.7. Hence
we assume that u0(0) = 0. Up to a suitable choice of the coordinate system, according to the
notation introduced in (1.6), it is not restrictive to consider the case α1 = 0, α2 = π, so that,
for some r1 ∈ (0, R), the configuration of the two opposite poles is given by

a1
ε = r1(ε, 0) and a2

ε = r1(−ε, 0), (7.36)

and
Sε := S1

ε = [−r1ε, r1ε] × {0}, (7.37)

see 7.2. Furthermore, since u0(0) = 0, it is well known that there exists m ∈ N \ {0},

0
a1

εa2
ε

Figure 7.2: Two opposite poles colliding at 0 (k1 = 0, k2 = 1).

β ∈ R \ {0} and α0 ∈ [0, π
m) such that

r−mu0(r cos t, r sin t) → β sin(m(t− α0)) in C1,τ ([0, 2π],C) as r → 0+, (7.38)

for any τ ∈ (0, 1). In particular, the 2m half-lines with slopes α0 + j π
m , j = 0, . . . , 2m− 1, are

tangent to the nodal lines of u0 meeting at 0.

Remark 7.1.5. By standard regularity theory, u0 is analytic in Ω. Let Tm be the Taylor
polynomial of u0 centered at 0 of order m, with m ∈ N\ {0} being as in (7.38). Then, in view
of (7.38),

Tm(x1, x2) =
m∑

j=0

1
(m− j)!j!

∂mu0

∂xm−j
1 ∂xj

2
(0)xm−j

1 xj
2. (7.39)

For every t ∈ [0, 2π], we have

Tm(cos t, sin t) = β sin(m(t− α0)),
(∇Tm)(cos t, sin t) · (− sin t, cos t) = mβ cos(m(t− α0)).
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Hence
1
m!

∂mu0
∂xm

1
(0) = −β sin(mα0) and 1

(m− 1)!
∂mu0

∂xm−1
1 ∂x1

2
(0) = mβ cos(mα0),

so that, in particular,

β = (−1)j

m!
∂mu0

∂xm−1
1 ∂x1

2
(0) if α0 = jπ

m
for some j ∈ {0, 1, . . . , 2m− 1}, (7.40)

and

β = (−1)j+1

m!
∂mu0
∂xm

1
(0) if α0 = π

2m + jπ

m
for some j ∈ {0, 1, . . . , 2m− 1}. (7.41)

If the segment Sε is tangent to a nodal line of u0, i.e. if α0 = jπ
m for some j ∈ {0, 1, . . . , 2m−

1}, we have the following result which generalizes [5, Theorem 2.8] dropping any symmetry
assumption on Ω.

Theorem 7.1.6. Let λn0 be a simple eigenvalue of (1.11) and let u0 be as in (7.35). Assume
that u0(0) = 0 and let m ∈ N \ {0} and α0 be as in (7.38). Let k1 = 0 and k2 = 1 with the
configuration of poles as in assumption (7.36). If α0 = jπ

m for some j ∈ {0, 1, . . . , 2m − 1},
then

λε,n0 − λn0 = −mπβ2r2m
1

4m−1

(
m− 1
⌊m−1

2 ⌋

)2

ε2m + o(ε2m) as ε → 0+,

with β as in (7.40).

On the other hand, if Sε lays on the bisector of the angle between the tangents to nodal
lines, i.e. if α0 = π

2m + jπ
m for some j ∈ {0, 1, . . . , 2m − 1}, then we prove the following

expansion.

Theorem 7.1.7. Let λn0 be a simple eigenvalue of (1.11) and let u0 be as in (7.35). Assume
that u0(0) = 0 and let m ∈ N \ {0} and α0 be as in (7.38). Let k1 = 0 and k2 = 1 with the
configuration of poles as in assumption (7.36). If α0 = π

2m + jπ
m for some j ∈ {0, 1, . . . , 2m−1},

then

λε,n0 − λn0 = mπβ2r2m
1

4m−1

(
m− 1
⌊m−1

2 ⌋

)2

ε2m + o(ε2m) as ε → 0+,

with β as in (7.41).

We observe that Theorem 7.1.7 is a generalization of [5, Theorem 2.6] and [3, Theorem
1.16].

The rest of Chapter 7 is organized as follows. In Section 7.2 we collect some basic facts,
such as the gauge invariance property of the problem, useful features of the functional spaces
involved, and some known results that will be used in the rest of the chapter. In Section 7.3
we provide some preliminary estimates on the quantities Eε and Lε that appear in formula
(7.20); such estimates are used in Section 7.4, where the proof of Theorem 7.1.1 is completed.
In Section 7.5 we perform a blow-up analysis of the potential Vε appearing in (7.18), in the
case k odd; this is the key ingredient in the proof of Theorems 7.1.2 and 7.1.4. In the same
section we also complete the proof of 7.1.3. Finally, in Section 7.6 we consider the case of
two poles colliding to 0 from opposite sides of the same straight line, thus proving Theorems
7.1.6 and 7.1.7.
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7.2 Preliminaries

7.2.1 Scalar potential functions for Ab outside half-lines

The construction of the gauge transformation, which makes problems (1.9) and (1.10) equiva-
lent to eigenvalue problems for the Laplacian in domains with straight cracks, is based on the
remark that, since Aharonov-Bohm vector fields are irrotational, they are gradients of some
scalar potential functions in simply connected domains, such as the complement of straight
half-lines starting at the pole.

For every b = (b1, b2) ∈ R2, let θb : R2 \ {b} → [0, 2π) be defined as

θb(x1, x2) :=



arctan
(x2−b2

x1−b1

)
, if x1 > b1, x2 ≥ b2,

π
2 , if x1 = b1, x2 > b2,

π + arctan
(x2−b2

x1−b1

)
, if x1 < b1,

3
2π, if x1 = b1, x2 < b2,

2π + arctan
(x2−b2

x1−b1

)
, if x1 > b1, x2 < b2,

i.e.,
θb

(
b+ r(cos t, sin t)

)
= t for all t ∈ [0, 2π) and r > 0.

We observe that θb ∈ C∞(R2 \ {(x1, b2) : x1 ≥ b1}) and ∇θb can be extended to be in
C∞(R2 \ {b}), with ∇

( θb
2
)

= Ab in R2 \ {b}. For every b ∈ R2, α ∈ R, and x = (x1, x2) ∈ R2,
we define

Rb,α(x) :=
[
b1
b2

]
+Mα

[
x1 − b1
x2 − b2

]
, (7.42)

with
Mα :=

[
cosα − sinα
sinα cosα

]
, (7.43)

i.e., Rb,α is a rotation about b by an angle α. Let

θb,α := θb ◦Rb,α, (7.44)

so that θb,α(b + r(cos t, sin t)) = α + t for every r > 0 and t ∈ [−α,−α + 2π). We observe
that θb,α is smooth in R2 \ {b+ r(cosα,− sinα) : r ≥ 0} and ∇θb,α can be extended to be in
C∞(R2 \ {b}), with ∇

( θb,α

2
)

= Ab, see 7.3.

b α

θb,α

Figure 7.3: θb,α is smooth in R2 \ {b+ r(cosα,− sinα) : r ≥ 0}.
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7.2.2 Some remarks on functional spaces

In this subsection we describe some properties of the functional spaces Hε introduced in
Section 7.1.

Remark 7.2.1. The natural embedding I : Hε → L2(Ω) is compact. Indeed, we can cut Ω
along the lines Σj for j = 1 . . . , k1 +k2, where Σj are defined in Section 7.1. Then we can use
classical compact embedding results for each resulting subset, see for example [99, Theorem
12.30].

Arguing as in 7.2.1, from the Poincaré inequality for functions vanishing on a portion of
the boundary we can deduce the following Poincaré inequality in H1, and hence in Hε for any
ε ∈ [0, 1].

Proposition 7.2.2. There exists a constant CP > 0 such that, for every ε ∈ [0, 1] and
w ∈ Hε, ∫

Ω
w2dx ≤ CP

∫
Ω\Γε

|∇w|2 dx.

Since Ω \ Γ1 ⊆ Ω \ Γε1 ⊆ Ω \ Γε2 , we have Hε2 ⊆ Hε1 ⊆ H1 for all 0 ≤ ε2 ≤ ε1 ≤ 1.
Proposition 7.2.3 below establishes a Mosco-type convergence result for the spaces Hε as
ε → 0+.

Proposition 7.2.3. Let {εn} ⊂ (0, 1) be such that limn→∞ εn = 0. If {vn}n ⊂ H1 and
v ∈ H1 are such that vn ∈ Hεn for all n ∈ N and vn ⇀ v in H1 as n → ∞, then v ∈ H0.

Proof. For every ε ∈ (0, 1], there exists n(ε) ∈ N such that vn ∈ Hε for all n > n(ε). The weak
convergence vn ⇀ v in H1 then implies that v ∈ Hε for all ε ∈ (0, 1]. It follows that there
exists f ∈ L2(Ω,RN ) such that ∇v = f in D′(Ω \ Γε) for all ε ∈ (0, 1]. Actually, ∇v = f in
D′(Ω\Γ0), since, for every φ ∈ C∞

c (Ω\Γ0), suppφ ⊂ Ω\Γε for ε sufficiently small. Therefore,
v ∈ H1(Ω \ Γ0). From the fact that v ∈ H1 ∩H1(Ω \ Γ0) it follows that v ∈ H0.

Since the singleton {0} has null capacity in Ω, functions in H0, respectively in H̃0, can be
approximated by functions vanishing in a neighbourhood of 0, as stated in Lemma 7.2.4.

Lemma 7.2.4.

(i) The set H0,0 := {v ∈ H0 : v ≡ 0 in a neighbourhood of 0} is dense in H0.

(ii) The set H̃0,0 := {v ∈ H̃0 : v ≡ 0 in a neighbourhood of 0} is dense in H̃0.

Proof. To prove (i) we first notice that, if v ∈ H0, then, defining vn as

vn(x) =


v(x), if |v(x)| < n,

−n, if v(x) < −n,
n, if v(x) > n,

vn ∈ H0 ∩ L∞(Ω) for all n ∈ N and vn → v in H0. Therefore it is enough to prove that
H0,0 ∩ L∞(Ω) is dense in H0 ∩ L∞(Ω). To this aim, let us fix some v ∈ H0 ∩ L∞(Ω). For
every ε ∈ (0, 1) we consider the cut-off function ωε ∈ W 1,∞(R2) defined as

ωε(x) :=


1, if x ∈ Dε,
2 log |x|−log ε

log ε , if x ∈ D√
ε \Dε,

0, if x ∈ Ω \D√
ε.

(7.45)

183



a
j
ε

0

θε
j

αj

(a) θε
j for j ≤ k1 + k2.

a
j
ε

0

θε
j

αj

(b) θε
j for j ≥ k1 + k2 + 1.

Figure 7.4: The angles θε
j for 1 ≤ j ≤ k1 + 2k2. The half-lines represent the singular set of

the function θε
j .

One may directly verify that (1 − ωε)v ∈ H0,0 ∩ L∞(Ω) for all ε ∈ (0, 1) and (1 − ωε)v → v
in H0 as ε → 0. The proof of (i) is thereby complete. We can proceed in a similar way to
obtain (ii).

7.2.3 An equivalent eigenvalue problem by gauge transformation

For every ε ∈ (0, 1], using the notation introduced in (7.44), we define

θj
ε :=

θaj
ε,π−αj , if j = 1, . . . , k1 + k2,

θ
aj

ε,−αj , if j = k1 + k2 + 1, . . . , k1 + 2k2,

with αj as in (1.6), see 7.4, and

Θε : R2 \ {aj
ε : j = 1, . . . , k} → R, Θε := 1

2

k∑
j=1

(−1)j+1θj
ε. (7.46)

We observe that Θε verifies (7.8).
For any ε ∈ (0, 1], let λ ∈ R be an eigenvalue of problem (1.9) associated to the eigen-

function u ∈ H1,ε
0 (Ω,C) \ {0}. Then the function

v(x) := e−iΘε(x)u(x), x ∈ Ω \ Γε,

belongs to Hε and weakly solves (7.10), in the sense that v ∈ H̃ε and∫
Ω\Γε

∇v · ∇w dx = λ

∫
Ω
vw dx for all w ∈ H̃ε, (7.47)

where H̃ε is defined in (7.5). On the other hand, if v ∈ H̃ε solves (7.47), then u = eiΘεv solves
(1.9). Therefore the eigenvalue problems (1.9) and (7.10) have the same eigenvalues and their
eigenfunctions match each other via the phase e−iΘε .
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A similar gauge transformation can be made for solutions to (1.10). For every j =
1, . . . , k1, let αj be as in (1.6) and

θj
0 := θ0 ◦R0,π−αj .

We define

Θ0 : R2 \ {0} → R, Θ0(x) = 1
2

k1∑
j=1

(−1)j+1θj
0(x). (7.48)

If k1 = 0 we just take Θ0 ≡ 0. We observe that Θ0 satisfies (7.12). Furthermore, if t ∈ [0, 2π),

θj
0(cos t, sin t) =

{
t− αj + π, if t ∈ [0, αj + π),
t− αj − π, if t ∈ [αj + π, 2π),

(7.49)

= −αj + t+ π(1 − 2χ[αj+π,2π)),

where χ is defined in (7.23). We have that u is an eigenfunction of problem (1.10), associated
to the eigenvalue λ, if and only if the function

v(x) := e−iΘ0(x)u(x), x ∈ Ω \ Γ0, (7.50)

is a non-zero weak solution of (7.14) in the sense that v ∈ H̃0 and∫
Ω\Γ0

∇v · ∇w dx = λ

∫
Ω
vw dx for all w ∈ H̃0, (7.51)

where H̃0 is defined in (7.6). We recall that, if k1 is even, then, letting v as in (7.50), the
function veiΘ0 = u is an eigenfunction of the Dirichlet Laplacian in Ω, hence it is smooth in
Ω.

Remark 7.2.5. We may treat eigenfunctions of problems (7.10) and (7.14) as real-valued
functions (thus justifying the choice to consider Hε as a space of real functions). Indeed, since
all the coefficients in (7.10) and (7.14) are real, both the real and the imaginary part of any
eigenfunction are eigenfunctions, if not trivial. Hence, any eigenspace of (7.10) and (7.14)
admits a basis made of reals eigenfunctions. See also [1, Subsection 2.3].

7.2.4 Asymptotics of solutions to the limit eigenvalue problem

Let {αj}k1
j=1 and χ[αj+π,2π) be as in (1.6) and (7.23), respectively. Let f be the function

defined in (7.22).

Proposition 7.2.6. Let k1 be odd. If v is a non-trivial solution to (7.14), in the sense that
v ∈ H̃0 satisfies (7.51), then there exist an odd number m ∈ N, β ∈ R \ {0}, and α0 ∈

[
0, 2π

m

)
such that

ε− m
2 v
(
ε cos t, ε sin t

)
→ β f(t) sin

(
m
2 (t− α0)

)
(7.52)

in C1,τ
(
[0, 2π]\{αj +π}k1

j=1,R
)

as ε → 0+, for all τ ∈ (0, 1). Moreover, there exists a constant
C > 0 such that

|v(x)| ≤ C|x|
m
2 and |∇v(x)| ≤ C|x|

m
2 −1 for all x ∈ Ω \ Γ0. (7.53)
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Furthermore, letting

Ψ(x) = Ψ(r cos t, r sin t) = β r
m
2 f(t) sin

(
m
2 (t− α0)

)
,

with m, β, and α0 as in (7.52) and f as in (7.22), we have that, as ε → 0+,

ε− m
2 v(ε·) → Ψ in H1(Dρ \ Γ0) for all ρ > 0. (7.54)

Proof. As observed above, the function u := eiΘ0v is an eigenfunction of (1.10) with k odd,
i.e. {

(i∇ +A0)2 u = λu, in Ω,
u = 0, on ∂Ω,

with A0 defined in (1.7). From [66, Theorem 1.3, Section 7] it follows that there exist an odd
m ∈ N and β1, β2 ∈ C such that (β1, β2) ̸= (0, 0) and, as ε → 0+,

ε− m
2 u(ε cos t, ε sin t) → e

i
2 t (β1 cos

(
m
2 t
)

+ β2 sin
(

m
2 t
))

in C1,τ ([0, 2π],C) (7.55)

and

ε1− m
2 ∇u(ε cos t, ε sin t) → m

2 e
i
2 t (β1 cos

(
m
2 t
)

+ β2 sin
(

m
2 t
))

θ(t)

+ d
dt

(
e

i
2 t (β1 cos

(
m
2 t
)

+ β2 sin
(

m
2 t
)))

τ (t) in C0,τ ([0, 2π],C) (7.56)

for all τ ∈ (0, 1), where θ(t) = (cos t, sin t) and τ (t) = (− sin t, cos t). Furthermore, by (7.49),
for all t ∈ [0, 2π] we have

k1∑
j=1

(−1)j+1θj
0(ε cos t, ε sin t) = t+

k1∑
j=1

(−1)jαj + π − 2π
k1∑

j=1
(−1)j+1χ[αj+π,2π)(t). (7.57)

From (7.55), the definition of u, and (7.57) it follows that

ε− m
2 v
(
ε cos t, ε sin t

)
→ f(t)e

− i
2

(
π+
∑k1

j=1(−1)jαj

)(
β1 cos

(
m
2 t
)

+ β2 sin
(

m
2 t
) )

in C1,τ
(
[0, 2π] \ {αj + π}k1

j=1,C
)

as ε → 0+, for all τ ∈ (0, 1). Then, since v is real-valued (see
Remark 7.2.5), we have proved that there exist c1, c2 ∈ R such that (c1, c2) ̸= (0, 0) and

ε− m
2 v
(
ε cos t, ε sin t

)
→ f(t)

(
c1 cos

(
m
2 t
)

+ c2 sin
(

m
2 t
) )
. (7.58)

Letting

α0 =
{ 2

m arccot
(

− c2
c1

)
, if c1 ̸= 0,

0, if c1 = 0,

we can rewrite (7.58) as (7.52). Estimate (7.53) is a consequence of (7.55) and (7.56).
Finally, to prove (7.54), we define

ũε(x) := ε− m
2 u(εx), Φ(x) = Φ(r cos t, r sin t) = r

m
2 e

i
2 t (β1 cos

(
m
2 t
)

+ β2 sin
(

m
2 t
))
.

We observe that (7.55), (7.56), and the Dominated Convergence Theorem imply that

∇ũε → ∇Φ and ũε

|x|
→ Φ

|x|
in L2(Dρ) for all ρ > 0,

which easily provides (7.54).
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In the case k even, solutions to (7.14) are more regular.

Proposition 7.2.7. Let k1 be even. If v is a non-trivial solution to (7.14), then there exist
m ∈ N, β ∈ R \ {0}, and α0 ∈

[
0, π

m

)
such that

ε−mv(ε cos t, ε sin t) → βf(t) sin(m(t− α0)) (7.59)

in C1,τ ([0, 2π]\{π+αj}k1
j=1,R) as ε → 0+, for all τ ∈ (0, 1). Moreover, there exists a constant

C > 0 such that

|v(x)| ≤ C|x|m and |∇v(x)| ≤
{
C|x|m−1, if m ≥ 1,
C, if m = 0,

(7.60)

for all x ∈ Ω \ Γ0.

Proof. The function u := eiΘ0v is an eigenfunction of (1.10) with k even, i.e. u is an eigen-
function of the Dirichlet Laplacian. From (7.49) we deduce the analogue of (7.57) in the even
case:

k1∑
j=1

(−1)j+1θj
0(ε cos t, ε sin t) =

k1∑
j=1

(−1)jαj − 2π
k1∑

j=1
(−1)j+1χ[αj+π,2π)(t) (7.61)

for all t ∈ [0, 2π]. Claims (7.59) and (7.60) follow from the fact that u is analytic, the definition
of u and (7.61), observing that, since k1 is even, |∇u| = |∇v|.

Remark 7.2.8. For the sake of simplicity, for any w ∈ H0 we simply write w instead of
γj

+(w) on Sj
ε , since γj

+(w) = γj
−(w) on Sj

ε for any j = 1, . . . , k1 + k2. We also simply write v0,
∇v0 and ∇v0 · νj when considering their traces on Sj

ε .

7.3 Definition and properties of Eε
For some n0 ∈ N \ {0}, let u0 be an eigenfunction of (1.10) associated to the eigenvalue
λ0 = λ0,n0 and v0 be as in (7.50), so that v0 is a non-zero weak solution of (7.14) with λ = λ0.
By Remark 7.2.5 it is not restrictive to assume that v0 is real-valued and ∥u0∥L2(Ω,C) =
∥v0∥L2(Ω) = 1.

Let Lε be the functional introduced in (7.16). We observe that Lε is well-defined; indeed,
for every j = 1, . . . , k1 + k2, we have ∇v0 ∈ Lp(Sj

ε) for all p ∈ [1, 2) in view of (7.53) and
(7.60), whereas γj

+(w) ∈ Lq(Sj
ε) for all w ∈ H1 and q ∈ [2,+∞) by (7.3). We provide below

an estimate of the norm of Lε in H∗
1, where H∗

1 is the dual space of H1.

Proposition 7.3.1. Let m ∈ N be as in Proposition 7.2.6 for v = v0, if k is odd, or as in
Proposition 7.2.7, if k is even. For every ε ∈ (0, 1], the map Lε defined in (7.16) belongs to
H∗

1 and, as ε → 0+,

∥Lε∥H∗
1

=


O
(
ε

m
2 −1+ 1

p
)
, if k is odd,

O
(
ε

1
p
)
, if k is even and m = 0,

O
(
ε

m−1+ 1
p
)
, if k is even and m > 0,

(7.62)

for every p ∈ (1, 2). In particular, Lε → 0 in H∗
1 as ε → 0+.
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Proof. If k is odd, for every p ∈ (1, 2) and w ∈ H1, from the Hölder inequality, (7.3) and
(7.53) it follows that, letting p′ = p

p−1 ,

|Lε(w)| ≤ 2
k1+k2∑

j=1
∥∇v0∥

Lp(Sj
ε) ∥γj

+(w)∥
Lp′ (Sj

ε) ≤ Cε
m
2 −1+ 1

p ∥w∥H1
,

for some constant C > 0 independent of ε. If k is even, the proof is similar due to (7.60).

For every ε ∈ (0, 1], we now consider the functional Jε defined in (7.17) and, recalling the
definition of H̃ε in (7.5), the minimization problem

inf
{
Jε(w) : w ∈ Hε and w − v0 ∈ H̃ε

}
. (7.63)

Note that, since v0 ∈ H̃0, the condition w − v0 ∈ H̃ε is equivalent to

T j(w) =
{

0, on Γj
0 for all j = 1, . . . , k1,

2v0, on Sj
ε for all j = 1, . . . , k1 + k2.

(7.64)

Proposition 7.3.2. The infimum in (7.63) is achieved by a unique Vε ∈ Hε. Furthermore,
Vε weakly solves the problem

−∆Vε = 0, in Ω \ Γε,

Vε = 0, on ∂Ω,
T j(Vε − v0) = 0, on Γj

ε for all j = 1, . . . , k1,

T j(∇Vε · νj − ∇v0 · νj) = 0, on Γj
ε for all j = 1, . . . , k1,

T j(Vε − v0) = 0, on Sj
ε for all j = k1 + 1, . . . , k1 + k2,

T j(∇Vε · νj − ∇v0 · νj) = 0, on Sj
ε for all j = k1 + 1, . . . , k1 + k2,

(7.65)

in the sense that Vε ∈ Hε, Vε − v0 ∈ H̃ε, and∫
Ω\Γε

∇Vε · ∇w dx = −Lε(w) for all w ∈ H̃ε. (7.66)

Proof. In view of (7.17), the continuity of the linear operator Lε, and Proposition 7.2.2, we can
easily verify that Jε is continuous and coercive on the set v0 + H̃ε = {w ∈ Hε : w− v0 ∈ H̃ε},
which is closed and convex. Moreover, Jε is convex. Therefore, the infimum in (7.63) is
achieved by some Vε, which weakly solves (7.65) in the sense of (7.66). If Vε,1, Vε,2 ∈ v0 + H̃ε

are weak solutions of (7.65), then Vε,1 − Vε,2 ∈ H̃ε and∫
Ω\Γε

(∇Vε,1 − ∇Vε,2) · ∇w dx = 0 for all w ∈ H̃ε. (7.67)

Testing (7.67) with w = Vε,1−Vε,2 we obtain ∇(Vε,1−Vε,2) = 0 and hence, by Proposition 7.2.2,
we conclude that Vε,1 = Vε,2.

For every ε ∈ (0, 1], let Jε and Vε be as (7.17) and Proposition 7.3.2, respectively. We
consider the quantity Eε := Jε(Vε) as in (7.19). Eε plays a significant role in the asymptotic
expansion of the eigenvalue variation λε,n0 − λ0,n0 , as the poles aj

ε move towards the collision
at 0.
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To derive a first upper and lower bound for Eε, we consider, for every r > 0, the radial
cut-off function ηr ∈ C∞

c (R2) defined as

ηr(x) := η

(
x

r

)
(7.68)

with η as in (7.29).

Proposition 7.3.3. Let m ∈ N be as in Proposition 7.2.6 for v = v0, if k is odd, or as
in Proposition 7.2.7, if k is even. Then there exists a constant C1 > 0 such that, for all
ε ∈ (0, 1],

Eε ≤


C1 ε

m, if k is odd,
C1

1
| log ε| , if k is even and m = 0,

C1 ε
2m, if k is even and m > 0.

(7.69)

Moreover, for every p ∈ (1, 2) there exists C2 = C2(p) > 0 such that

Eε ≥


−C2 ε

m−2+ 2
p , if k is odd,

−C2 ε
2
p , if k is even and m = 0,

−C2 ε
2m−2+ 2

p , if k is even and m > 0.
(7.70)

In particular, Eε → 0 as ε → 0+.

Proof. If k is odd, let ηε ∈ C∞
c (R2) be a cut-off function as in (7.68) with r = ε. From (7.16),

(7.17), (7.63), (7.19), and (7.53) it follows that

Jε(Vε) ≤ Jε(ηεv0) ≤ 1
2

∫
Ω\Γε

|∇(ηεv0)|2 dx+ 2
k1+k2∑

j=1

∫
Sj

ε

|∇v0| |v0| dS

≤
∫

(Ω∩D2ε(0))\Γε

|∇v0|2 dx+
∫

Ω∩D2ε(0)
|∇ηε|2v2

0 dx+ 2
k1+k2∑

j=1

∫
Sj

ε

|∇v0| |v0| dS ≤ C1ε
m

for some constant C1 > 0 independent of ε. If k is even and m ∈ N\{0}, (7.69) can be proved
arguing in a similar way and using (7.60) instead of (7.53).

If k is even and m = 0, for every ε ∈ (0, 1] we consider the cut-off function ωε ∈ W 1,∞(R2)
defined in (7.45). We have 0 ≤ ωε ≤ 1 and, thanks to (7.16), (7.17), (7.63), (7.19), and (7.60)
with m = 0,

Jε(Vε) ≤ Jε(ωεv0) ≤ 1
2

∫
Ω\Γε

|∇(ωεv0)|2 dx+ 2
k1+k2∑

j=1

∫
Sj

ε

|∇v0| |v0| dS

≤
∫

(Ω∩D√
ε(0))\Γε

|∇v0|2 dx+
∫

Ω∩D√
ε(0)

|∇ωε|2v2
0 dx+ 2

k1+k2∑
j=1

∫
Sj

ε

|∇v0| |v0| dS ≤ C1
1

| log ε|

for some constant C1 > 0 independent of ε. Estimate (7.69) is thereby proved.
To prove (7.70), we observe that

∥Vε∥2
H1

= ∥Vε∥2
Hε

= 2Eε − 2Lε(Vε) ≤ 2Eε + 2|Lε(Vε)|

≤ 2Eε + 2 ∥Lε∥H∗
1

∥Vε∥H1
≤ 2Eε + 2 ∥Lε∥2

H∗
1

+ 1
2 ∥Vε∥2

H1
,
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and hence
Eε + ∥Lε∥2

H∗
1

≥ 1
4 ∥Vε∥2

H1
≥ 0, (7.71)

which, together with (7.62), implies (7.70).

Proposition 7.3.4. We have Vε → 0 as ε → 0+ strongly in H1.

Proof. From Proposition 7.3.3 we have limε→0+ Eε = 0, whereas Proposition 7.3.1 implies that
limε→0+ ∥Lε∥H∗

1
= 0. The conclusion then follows from (7.71).

Proposition 7.3.5. We have Eε = o
(
∥Vε∥Hε

)
as ε → 0+.

Proof. Proceeding similarly to the previous proof, we have

|Eε| ≤
∥Vε∥2

H1

2 + ∥Lε∥H∗
1

∥Vε∥H1

and we can conclude thanks to (7.62) and Proposition 7.3.4.

Proposition 7.3.6. We have∫
Ω
V 2

ε dx = o
(

∥Vε∥2
Hε

)
as ε → 0+.

Proof. Let us assume by contradiction that there exist a positive constant C > 0 and a
sequence {εn}n∈N ⊂ (0, 1) such that limn→∞ εn = 0 and∫

Ω
V 2

εn
dx ≥ C

∫
Ω\Γεn

|∇Vεn |2 dx for all n ∈ N. (7.72)

For every n ∈ N, we define Wn := Vεn
∥Vεn ∥L2(Ω)

. Then ∥Wn∥L2(Ω) = 1 for every n ∈ N and
{Wn}n∈N is bounded in H1 thanks to (7.72). It follows that there exists W ∈ H1 such that
Wn ⇀ W weakly in H1 as n → ∞, up to a subsequence. Since Wn ∈ Hεn for every n, from
Proposition 7.2.3 we deduce that W ∈ H0, while Remark 7.2.1 ensures that

∥W∥L2(Ω) = 1. (7.73)

Since Wn−∥Vεn∥−1
L2(Ω)v0 ∈ H̃εn , we have T j(Wn) = 0 on Γj

0 for all j = 1, . . . , k1, see (7.64). By
continuity of the trace operator (7.4), we deduce that T j(W ) = 0 on Γj

0 for all j = 1, . . . , k1,
hence W ∈ H̃0.

Let w ∈ H̃0,0, where H̃0,0 is defined in Lemma 7.2.4. For n sufficiently large, w ∈ H̃εn and
Lεn(w) = 0, hence we can test (7.66) with w, thus obtaining∫

Ω\Γ1
∇Wn · ∇w dx =

∫
Ω\Γεn

∇Wn · ∇w dx = −Lεn(w) = 0.

Letting n → ∞ in the above identity, we obtain
∫

Ω\Γ0
∇W · ∇w dx = 0 for all w ∈ H̃0,0 and

hence, by the density of H̃0,0 in H̃0 established in Lemma 7.2.4,∫
Ω\Γ0

∇W · ∇w dx = 0 for all w ∈ H̃0. (7.74)

Choosing w = W in (7.74), we conclude that W = 0, thus contradicting (7.73).
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7.4 Asymptotic expansion of the eigenvalue variation
For every ε ∈ [0, 1], we consider the bilinear form qε : H̃ε × H̃ε → R defined as

qε(w1, w2) :=
∫

Ω\Γε

∇w1 · ∇w2 dx, (7.75)

where H̃ε is as in (7.5). To simplify notation, we denote by qε both the bilinear form defined
above and the associated quadratic form

qε(w) =
∫

Ω\Γε

|∇w|2 dx = ∥w∥2
Hε
, w ∈ H̃ε.

The following preliminary result can be obtained in a standard way from the compactness
properties pointed out in Remark 7.2.1 and abstract spectral theory, see for example [84,
Theorems 6.16 and 6.21, Proposition 8.20].

Proposition 7.4.1. Let ε ∈ [0, 1] and Fε : H̃ε → H̃ε be the linear operator defined as

qε(Fε(w1), w2) = (w1, w2)L2(Ω) . (7.76)

Then

(i) Fε is symmetric, non-negative and compact; in particular 0 belongs to its spectrum
σ(Fε).

(ii) σ(Fε) \ {0} = {µn,ε}n∈N\{0}, where µn,ε := 1/λε,n for every n ∈ N \ {0}.

(iii) For every µ ∈ R and w ∈ H̃ε,

(
dist(µ, σ(Fε))

)2 ≤ qε(Fε(w) − µw)
qε(w) .

Letting n0 ∈ N \ {0}, v0 and λ0 = λ0,n0 be as in Section 7.3, to prove an asymptotic
expansion of the eigenvalue variation we further assume that

λ0 is simple as an eigenvalue of (1.10), (7.77)

and, consequently, as an eigenvalue of (7.14). Therefore, the continuity result of [97, Theorem
1.2], see (1.12), implies that also λε,n0 is simple for ε sufficiently small. From now on, we
denote

λε = λε,n0 .

For ε small, let vε ∈ H̃ε be the unique eigenfunction of (7.10) associated to the eigenvalue
λε = λε,n0 satisfying ∫

Ω
v2

ε dx = 1 and
∫

Ω
vεv0 dx > 0. (7.78)

We denote as Πε the projection onto the one-dimensional space spanned by vε, i.e.

Πε : L2(Ω) → H̃ε, (7.79)
w 7→ (w, vε)L2(Ω) vε.

Theorem 7.1.1 is contained in the following result, the proof of which is inspired by [3,
Appendix A].
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Theorem 7.4.2. Under assumption (7.77), the following asymptotic expansion holds:

λε − λ0 = 2Eε − 2Lε(v0) + o
(
Lε(v0)

)
+ o

(
∥Vε∥2

Hε

)
as ε → 0+, (7.80)

where Vε is as Proposition 7.3.2. Furthermore,

∥v0 − Vε − Πε(v0 − Vε)∥Hε = o (∥Vε∥Hε) as ε → 0+, (7.81)
∥v0 − Πε(v0 − Vε)∥L2(Ω) = o (∥Vε∥Hε) as ε → 0+, (7.82)
∥Πε(v0 − Vε)∥2

L2(Ω) = 1 + o (∥Vε∥Hε) as ε → 0+. (7.83)

Proof. Let ψε := v0−Vε. We recall that we are assuming that v0 is real-valued and ∥v0∥L2(Ω) =
1. From (7.65) and (7.14) it follows that ψε ∈ H̃ε is a weak solution of the problem

−∆ψε = λ0v0, in Ω \ Γε,

ψε = 0, on ∂Ω,
T j(ψε) = 0, on Γj

ε for all j = 1, . . . , k1,

T j(∇ψε · νj) = 0, on Γj
ε for all j = 1, . . . , k1,

T j(ψε) = 0, on Sj
ε for all j = k1 + 1, . . . , k1 + k2,

T j(∇ψε · νj) = 0, on Sj
ε for all j = k1 + 1, . . . , k1 + k2,

in the sense that, letting qε be as in (7.75),

qε(ψε, w) = λ0 (v0, w)L2(Ω) for all w ∈ H̃ε. (7.84)

Let vε be an eigenfunction of (7.10) associated to λε chosen as in (7.78). Let Πε be the
projection operator onto the one-dimensional space spanned by vε defined in (7.79). Moreover,
we define

v̂ε := Πε(ψε)
∥Πε(ψε)∥L2(Ω)

. (7.85)

From (7.84) we deduce that

qε(ψε, w) − λ0 (ψε, w)L2(Ω) = λ0 (Vε, w)L2(Ω) for all w ∈ H̃ε. (7.86)

Choosing w = v̂ε in (7.86), by (7.47) and (7.85) we obtain

(λε − λ0) (ψε, v̂ε)L2(Ω) = λ0 (Vε, v0)L2(Ω) + λ0 (Vε, v̂ε − v0)L2(Ω) . (7.87)

We claim that
λ0

∫
Ω
Vεv0 dx = 2Eε − 2Lε(v0). (7.88)

Indeed, an integration by parts yields∫
Ω\Γε

∇v0 · ∇Vε dx− λ0

∫
Ω
v0Vε dx (7.89)

=
k1∑

j=1

∫
Γj

0

(
− γj

+(Vε)γj
+(∇v0 · νj) + γj

−(Vε)γj
−(∇v0 · νj)

)
dS

+
k1+k2∑

j=1

∫
Sj

ε

(
− γj

+(Vε)∇v0 · νj + γj
−(Vε)∇v0 · νj

)
dS

= −2
k1+k2∑

j=1

∫
Sj

ε

γj
+(Vε)∇v0 · νj dS + 2

k1+k2∑
j=1

∫
Sj

ε

v0∇v0 · νj dS,
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thanks to (7.65). Testing (7.84) with Vε − v0 we obtain∫
Ω\Γε

|∇(Vε − v0)|2 = −λ0

∫
Ω
v0(Vε − v0) dx,

and hence, in view of (7.51),∫
Ω\Γε

∇Vε · ∇v0 dx = 1
2

∫
Ω\Γε

|∇Vε|2 dx+ λ0
2

∫
Ω
v0Vε dx. (7.90)

Combining (7.16), (7.17), (7.19), (7.89) and (7.90), we derive (7.88).
From (7.87) and (7.88) we deduce that, for all ε ∈ (0, 1),

(λε − λ0) (ψε, v̂ε)L2(Ω) = 2Eε − 2Lε(v0) + λ0 (Vε, v̂ε − v0)L2(Ω) . (7.91)

Now we study the asymptotics, as ε → 0+, of each term in (7.91). For the sake of clarity, we
divide the rest of the proof into several steps.
Step 1. We claim that

|λε − λ0| = o
(
∥Vε∥Hε

)
as ε → 0+. (7.92)

Letting µ0 := λ−1
0 and µε := λ−1

ε , since λ0 is simple and λε → λ0 by (1.12), we have

|λε − λ0| = λελ0|µε − µ0| ≤ 2λ2
0 dist(µ0, σ(Fε)) ≤ 2λ2

0

(
qε(Fε(ψε) − µ0ψε)

qε(ψε)

)1/2
, (7.93)

where the last inequality is justified by Proposition 7.4.1. Since ∥v0∥L2(Ω) = 1, Proposition
7.3.4 and the Cauchy-Schwarz inequality imply that

qε(ψε) = λ0 +
∫

Ω\Γε

|∇Vε|2 dx− 2
∫

Ω\Γε

∇Vε · ∇v0 dx = λ0 + o(1). (7.94)

Furthermore, in view of (7.76) and (7.84) tested with Fε(ψε) − µ0ψε,

qε(Fε(ψε) − µ0ψε) = − (Vε,Fε(ψε) − µ0ψε)L2(Ω) + (v0,Fε(ψε) − µ0ψε)L2(Ω)

− qε(µ0ψε,Fε(ψε) − µ0ψε) = − (Vε,Fε(ψε) − µ0ψε)L2(Ω) .

Hence, by Proposition 7.2.2, Proposition 7.3.6 and the Cauchy-Schwarz inequality we conclude
that (

qε(Fε(ψε) − µ0ψε)
)1/2 = o

(
∥Vε∥Hε

)
as ε → 0+. (7.95)

Claim (7.92) is proved by combining (7.93), (7.94), and (7.95).
Step 2. We claim that

qε(ψε − Πεψε) = o
(

∥Vε∥2
Hε

)
as ε → 0+. (7.96)

Let
χε := ψε − Πεψε and ξε := Fε(χε) − µεχε. (7.97)

By definition we have
χε ∈ Nε := {w ∈ H̃ε : (w, vε)L2(Ω) = 0}
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and, since vε is an eigenfunction of (7.10), from (7.76) it follows that Fε(w) ∈ Nε for all
w ∈ Nε. Hence the operator

F̃ε := Fε

∣∣∣
Nε

: Nε → Nε

is well-defined. Furthermore, it is easy to verify that F̃ε satisfies properties (i)-(iii) of Propo-
sition 7.4.1 and σ(F̃ε) = σ(Fε) \ {µε}. In particular, there exists a constant K > 0, which
does not depends on ε, such that

(
dist(µε, σ(F̃ε))

)2 ≥ K. Then, by (7.97),

qε(ψε − Πεψε) = q(χε) ≤ 1
K

(
dist(µε, σ(F̃ε))

)2
qε(χε) ≤ 1

K
qε(F̃ε(χε) − µεχε)

= 1
K
qε(ξε). (7.98)

To estimate qε(ξε) we use (7.86) and (7.47) tested with ξε, thus obtaining

qε(χε, ξε) − λε (χε, ξε)L2(Ω) = λ0 (Vε, ξε)L2(Ω) + (λ0 − λε) (ψε, ξε)L2(Ω) . (7.99)

From (7.76) and (7.99) we deduce that

qε(ξε) = qε(Fε(χε), ξε) − µεqε(χε, ξε) = −µε[qε(χε, ξε) − λεqε(Fε(χε), ξε)]

= −λ0
λε

(Vε, ξε)L2(Ω) − (λ0 − λε)
λε

(ψε, ξε)L2(Ω) .

From the Cauchy-Schwarz inequality, Proposition 7.2.2, and (1.12) it follows that

(qε(ξε))1/2 ≤ C
(
∥Vε∥L2(Ω) + |λε − λ0| ∥ψε∥L2(Ω)

)
(7.100)

for some constant C > 0 which does not depend on ε. Furthermore, (7.86) tested with ψε,
(7.94), Proposition 7.2.2, and Proposition 7.3.4 yield

∥ψε∥2
L2(Ω) − 1 = − (Vε, ψε)L2(Ω) + o(1) = o(1) as ε → 0+.

Then (7.96) follows from Proposition 7.3.6, (7.92), (7.98), and (7.100). Estimate (7.81) is
thereby proved.
Step 3. We claim that

∥v0 − v̂ε∥L2(Ω) = o
(
∥Vε∥Hε

)
as ε → 0+. (7.101)

By (7.85)

v0 − v̂ε = v0 − Πεψε

∥Πεψε∥L2(Ω)
= 1

∥Πεψε∥L2(Ω)

((
∥Πεψε∥L2(Ω) − 1

)
v0 + v0 − Πεψε

)
. (7.102)

Furthermore, from the definition of ψε, Proposition 7.3.6, Proposition 7.2.2 and (7.96) it
follows that

∥v0 − Πεψε∥L2(Ω) ≤ ∥v0 − ψε∥L2(Ω) + ∥ψε − Πεψε∥L2(Ω) = o
(
∥Vε∥Hε

)
as ε → 0+, (7.103)
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thus proving (7.82). Since ∥v0∥L2(Ω) = 1, (7.103) and the Cauchy-Schwarz inequality imply
that

∥Πεψε∥2
L2(Ω) = ∥v0 − Πεψε∥2

L2(Ω) + ∥v0∥2
L2(Ω) − 2 (v0 − Πεψε, v0)L2(Ω)

= 1 + o
(
∥Vε∥Hε

)
(7.104)

as ε → 0+, thus proving estimate (7.83). Combining (7.102), (7.103) and (7.104) we obtain
(7.101).
Step 4. We claim that

(ψε, v̂ε)L2(Ω) = 1 + o
(
∥Vε∥Hε

)
as ε → 0+. (7.105)

Indeed, by (7.85) we have

(ψε, v̂ε)L2(Ω) =
(ψε − Πεψε,Πεψε)L2(Ω) + ∥Πεψε∥2

L2(Ω)
∥Πεψε∥L2(Ω)

.

Hence claim (7.105) follows from (7.96) and (7.104).
Putting together Proposition 7.3.6, (7.88), (7.91), (7.101), and (7.105), we finally obtain

λε − λ0 = (1 + o (∥Vε∥Hε))
(
2Eε − 2Lε(v0) + o

(
∥Vε∥2

Hε

))
= 2Eε − 2Lε(v0) + o

(
∥Vε∥2

Hε

)
as ε → 0+,

thus proving (7.80).

7.5 Blow-up Analysis for k odd
In this section we assume that k, and consequently k1, are odd and we perform a blow-up
analysis for the solution Vε of problem (7.65). In order to characterize the functional space
containing the limit profile, we first need a Hardy-type inequality, for the validity of which
the assumption that k is odd is crucial.

7.5.1 A Hardy type inequality for functions jumping on an odd number of
lines.

Let X̃ and H̃ be the functional spaces defined in (7.24) and (7.25), respectively. To prove
a Hardy-type inequality in R2 \ D1 for functions in X̃ , we first need the following Hardy
inequality on annuli for functions jumping on an odd number of lines. For every r > 0, we
define

X̃r := {w ∈ H1((D2r \Br) \ Γ0) : T j(w) = 0 on Γj
0 for all j = 1, . . . , k1}.

Lemma 7.5.1. Let k and k1 be odd. There exists a constant CH > 0 such that, for every
r > 0 and w ∈ X̃r,

r−2
∫

D2r\Br

w2 dx ≤ CH

∫
(D2r\Br)\Γ0

|∇w|2 dx. (7.106)

and ∫
D2r\Br

w2

|x|2
dx ≤ CH

∫
(D2r\Br)\Γ0

|∇w|2 dx. (7.107)
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Proof. Inequality (7.107) is a direct consequence of (7.106).
Let us first prove (7.106) for r = 1. We argue by contradiction and assume that there

exists a sequence {wn}n∈N ⊂ X̃1 such that, for all n ∈ N,∫
D2\D1

w2
n dx = 1 and

∫
(D2\D1)\Γ0)

|∇wn|2 dx < 1
n
. (7.108)

Hence {wn}n∈N is bounded in X̃1 and, up to a subsequence, wn ⇀ w weakly in X̃1 for some
w ∈ X̃1. From (7.108) and weak lower semi-continuity of the L2-norm, we have ∇w ≡ 0
in (D2 \ D1) \ Γ0; furthermore, reasoning as in Remark 7.2.1, the natural embedding of
H1((D2 \D1)\Γ0)) into L2(D2 \D1) is compact, hence ∥w∥L2(D2\D1) = 1. It follows that w is
constant on each connected component of (D2 \D1) \ Γ0 and w ̸≡ 0. Since (D2 \D1) \ Γ0 has
k1 connected components and k1 is odd, a contradiction arises from the condition T j(w) = 0,
which is satisfied on Γj

0 for all j = 1, . . . , k1.
For every r > 0 and w ∈ X̃r, it is enough to write the proved inequality for the scaled

function w(rx) to obtain (7.106).

We draw attention to the fact that the constant CH in Lemma 7.5.1 does not depend on
r. Hence, summing over annuli that fill R2 \D1, we obtain the following result.
Proposition 7.5.2. Let k and k1 be odd. Let CH > 0 be as in Lemma 7.5.1. Then, for every
w ∈ X̃ , ∫

R2\D1

w2

|x|2
dx ≤ CH

∫
(R2\D1)\Γ1

|∇w|2 dx. (7.109)

Furthermore, there exists a constant C ′
H > 0 such that, for all w ∈ X̃ ,∫

D1
w2 dx ≤ C ′

H

∫
R2\Γ1

|∇w|2 dx. (7.110)

Proof. If w ∈ X̃ , then w ∈ X̃r for all r > 1. Hence, by (7.107),∫
R2\D1

w2

|x|2
dx =

∞∑
h=0

∫
D2h+1 \D2h

w2

|x|2
dx

≤ CH

∞∑
h=0

∫
(D2h+1 \D2h )\Γ0

|∇w|2 dx = CH

∫
(R2\D1)\Γ1

|∇w|2 dx,

thus proving (7.109).
By integrating the identity div(u2x) = 2u∇u · x + 2u2 on each subset of D1 obtained by

cutting along the lines Σj , j = 1 . . . , k1 +k2, and using the Divergence Theorem, we can prove
that, for all w ∈ X̃ , ∫

D1
w2 dx ≤

∫
∂D1

w2 dS +
∫

D1\Γ1
|∇w|2 dx.

Then, by continuity of the trace operator from H1((D2 \D1) \ Γ0) into L2(∂D1) and (7.109),
there exists a positive constant C > 0 such that∫

D1
w2 dx ≤ C

(∫
D2\D1

w2 dx+
∫

(D2\D1)\Γ1
|∇w|2 dx

)
+
∫

D1\Γ1
|∇w|2 dx

≤ 4C
∫

D2\D1

w2

|x|2
dx+ (C + 1)

∫
R2\Γ1

|∇w|2 dx ≤ (4CCH + C + 1)
∫
R2\Γ1

|∇w|2 dx,

this proving (7.110).
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From Proposition 7.5.2 it follows that

∥w∥X̃ :=
(∫

R2\Γ1
|∇w|2 dx

)1/2

(7.111)

is a norm on X̃ and X̃ is a Hilbert space with respect to the corresponding scalar product.
Proposition 7.5.2 also ensures that the restriction operator

X̃ → H1(Dρ \ Γ1) (7.112)

is continuous with respect to the norm defined in (7.111) for every ρ > 0. Hence, for every
p ∈ [1,+∞), the trace operators

γj
+ : X̃ → Lp(Sj

1) and γj
− : X̃ → Lp(Sj

1) (7.113)

are well-defined and continuous with respect to the norm ∥ · ∥X̃ . In particular, since H̃ ⊂ X̃ ,

sup
w∈H̃\{0}

∥γj
+(w)∥2

Lp(Sj
1)

∥w∥2
X̃

< +∞ for every p ∈ [1,+∞) and j = 1, . . . , k1 + k2. (7.114)

Using (7.109), we prove now that functions in H̃ can be approximated with functions with
compact support. To this aim, we define

H̃c := {w ∈ H̃ : there exists r > 0 such that w ≡ 0 on R2 \Br}.

Proposition 7.5.3. H̃c is dense in H̃.

Proof. For every r > 1, let ηr be a cut-off function as in (7.68). If w ∈ H̃, it is clear that
{ηrw}r>1 ⊂ H̃c; moreover, by (7.109) we have w

|x| ∈ L2(R2 \D1) and hence

∫
R2\Γ1

|∇ηr|2w2 dx ≤ 16
∫

D2r\Br

w2

|x|2
dx → 0+ as r → ∞.

This implies that ∇(ηrw) → ∇w in L2(R2 \ Γ1) and hence ηrw → w in H̃.

7.5.2 Limit profile for blown-up potentials

In this subsection, we introduce and characterize the function Ṽ appearing as limit profile in
a blow-up analysis for the potentials Vε.

Proposition 7.5.4. There exists a unique solution Ṽ ∈ X̃ to the minimization problem
(7.30). Furthermore, Ṽ satisfies

Ṽ − ηΨ0 ∈ H̃∫
R2\Γ1

∇Ṽ · ∇w dx = −2
k1+k2∑

j=1

∫
Sj

1

∇Ψ0 · νjγj
+(w) dS for all w ∈ H̃.

(7.115)
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Proof. Since ∇Ψ0 ∈ Lp(Sj
1) for all p ∈ [1, 2), by continuity of the trace operators in (7.113)

we have that the linear functional L defined in (7.27) is well-defined and continuous. Then
the convex functional J defined in (7.28) is continuous and coercive on the closed and convex
set ηΨ0 + H̃ = {w ∈ X̃ : w− ηΨ0 ∈ H̃}. Therefore (7.30) admits a solution Ṽ , which satisfies
(7.115).

If Ṽ1 and Ṽ2 are solutions of (7.115), then we may take the difference between (7.115) for
Ṽ1 and (7.115) for Ṽ2, both tested with Ṽ1 − Ṽ2 ∈ H̃, and conclude that Ṽ1 = Ṽ2 thanks to
(7.109). Hence Ṽ is the unique solution to (7.115).

7.5.3 An equivalent characterization of the energy functional

In this subsection, we obtain an equivalent characterization of the energy Eε introduced in
(7.19), which will be used to improve (7.70) and obtain an optimal estimate for |Eε| in the
case k odd.
Proposition 7.5.5. Let ηε ∈ C∞

c (R2) be a cut-off function as in (7.68) with r = ε. Then,
for every ε ∈ (0, 1],

Eε = −1
2 sup

w∈H̃ε\{0}

(∫
Ω\Γε

∇w · ∇(ηεv0) + Lε(w)
)2∫

Ω\Γε
|∇w|2 dx

+ 1
2

∫
Ω\Γ0

|∇(ηεv0)|2 dx+ Lε(v0). (7.116)

Proof. Since Eε is the infimum in (7.63) and φ−v0 ∈ H̃ε if and only if φ−ηεv0 ∈ H̃ε, we have

Eε = inf
w∈H̃ε

Jε(w + ηεv0) = inf
w∈H̃ε\{0}

(
inf

t∈[0,+∞)
Jε(tw + ηεv0)

)
. (7.117)

Moreover, by (7.17)

Jε(tw + ηεv0) = t2

2

∫
Ω\Γε

|∇w|2 dx+ t

(∫
Ω\Γε

∇w · ∇(ηεv0) dx+ Lε(w)
)

+ 1
2

∫
Ω\Γ0

|∇(ηεv0)|2 dx+ Lε(v0).

Hence, for every w ∈ H̃ε \ {0},

inf
t∈[0,+∞)

Jε(tw+ηεv0) = −1
2

( ∫
Ω\Γε

∇w · ∇(ηεv0) dx+ Lε(w)
)2∫

Ω\Γε
|∇w|2 dx

+1
2

∫
Ω\Γ0

|∇(ηεv0)|2 dx+Lε(v0),

which implies (7.116) in view of (7.117).

Proposition 7.5.6. Let k and k1 be odd and m ∈ N be as in Proposition 7.2.6 for v = v0.
Then

Eε = O (εm) as ε → 0+.

Proof. From Proposition 7.5.5 and the Cauchy-Schwarz inequality it follows that

|Eε| ≤ 1
2 sup

w∈H̃ε\{0}

(∫
Ω\Γε

∇w · ∇(ηεv0) + Lε(w)
)2∫

Ω\Γε
|∇w|2 dx

+ 1
2

∫
Ω\Γ0

|∇(ηεv0)|2 dx+ |Lε(v0)|

≤ sup
w∈H̃ε\{0}

|Lε(w)|2∫
Ω\Γε

|∇w|2 dx
+ 3

2

∫
Ω\Γ0

|∇(ηεv0)|2 dx+ |Lε(v0)|. (7.118)
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From (7.53) and (7.16) it follows that∫
Ω\Γ0

|∇(ηεv0)|2 dx ≤ 2
∫

D2ε

|∇ηε|2v2
0 dx+ 2

∫
D2ε\Γ0

|∇v0|2 dx = O(εm) as ε → 0+ (7.119)

and
|Lε(v0)| = O(εm) as ε → 0+. (7.120)

By (7.16), the Hölder inequality, and (7.53), for every p ∈ (1, 2) and p′ = p
p−1 we have

sup
w∈H̃ε\{0}

|Lε(w)|2∫
Ω\Γε

|∇w|2 dx
≤ 4(k1 + k2) sup

w∈H̃ε\{0}

∑k1+k2
j=1

(∫
Sj

ε
|∇v0||γj

+(w)| dS
)2∫

Ω\Γε
|∇w|2 dx

(7.121)

≤ 4(k1 + k2)
k1+k2∑

j=1

(∫
Sj

ε

|∇v0|p dS
)2/p

sup
w∈H̃ε\{0}

∥γj
+(w)∥2

Lp′ (Sj
ε)∫

Ω\Γε
|∇w|2 dx

= O
(
ε

m−2+ 2
p
) k1+k2∑

j=1
sup

w∈H̃ε\{0}

∥γj
+(w)∥2

Lp′ (Sj
ε)∫

Ω\Γε
|∇w|2 dx

.

A change of variables and (7.114) yield

sup
w∈H̃ε\{0}

∥γj
+(w)∥2

Lp′ (Sj
ε)∫

Ω\Γε
|∇w|2 dx

≤ ε2/p′ sup
v∈H̃\{0}

∥γj
+(v)∥2

Lp′ (Sj
1)

∥v∥2
X̃

= O(ε2/p′) as ε → 0+,

hence from (7.121) we deduce that

sup
w∈H̃ε\{0}

|Lε(w)|2∫
Ω\Γε

|∇w|2 dx
= O(εm) as ε → 0+. (7.122)

The conclusion follows by combining estimates (7.118), (7.119), (7.120), and (7.122).

7.5.4 Blow-up analysis

Let k and k1 be odd and m ∈ N be as in Proposition 7.2.6 for v = v0. For every ε ∈ (0, 1],
letting Vε be as Proposition 7.3.2, we define

Ṽε(x) := ε− m
2 Vε(εx) and Ṽ0,ε(x) := ε− m

2 v0(εx). (7.123)

Extending trivially Ṽε and Ṽ0,ε in R2 \ Ω, we have Ṽε, Ṽ0,ε ∈ X̃ . Moreover

Ṽε − Ṽ0,ε ∈ H̃ (7.124)

and, by (7.66) and Proposition 7.5.3,

∫
R2\Γ1

∇Ṽε · ∇w dx = −2
k1+k2∑

j=1

∫
Sj

1

∇Ṽ0,ε · νjγj
+(w) dS for all w ∈ H̃. (7.125)

Let Ψ0 be as in (7.26). From (7.52) it follows that, for every j = 1, . . . , k1 + k2,

∇Ṽ0,ε(x) · νj → ∇Ψ0(x) · νj (7.126)
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as ε → 0+ for every x ∈ Sj
1, with

∇Ψ0(x) · νj (7.127)

=


βm

2 |x|
m
2 −1f(αj) cos

(
m
2 (αj − α0)

)
, if j = 1, . . . , k1,

βm
2 |x|

m
2 −1f(αj) cos

(
m
2 (αj − α0)

)
, if x ∈ (Sj

1)′, j = k1 + 1, . . . , k1 + k2,

−βm
2 |x|

m
2 −1f(αj + π) cos

(
m
2 (αj + π − α0)

)
, if x ∈ (Sj

1)′′, j = k1 + 1, . . . , k1 + k2,

where, for every j ∈ k1, . . . , k1 + k2,

(Sj
1)′ := {taj : t ∈ [0, 1]}, (Sj

1)′′ := {taj+k2 : t ∈ [0, 1]}.

On the other hand, (7.53) implies that

|∇Ṽ0,ε(x)| ≤ C|x|
m
2 −1 in R2 \ Γ0. (7.128)

From (7.126) and (7.128) we deduce that, for every j = 1, . . . , k1 + k2 and p ∈ [1, 2),

∇Ψ0 · νj ∈ Lp(Sj
1) and ∇Ṽ0,ε · νj → ∇Ψ0 · νj in Lp(Sj

1) as ε → 0+. (7.129)

Furthermore, by (7.54) we know that

Ṽ0,ε → Ψ0 in H1(Dρ \ Γ0) for all ρ > 0. (7.130)

Proposition 7.5.7. Let k and k1 be odd and m ∈ N be as in Proposition 7.2.6 for v = v0.
For every ε ∈ (0, 1], let Vε be as Proposition 7.3.2 and Ṽε as in (7.123). Then

Ṽε → Ṽ strongly in X̃ as ε → 0+, (7.131)

where Ṽ ∈ X̃ is the unique solution to the minimization problem (7.30) (and then to (7.115),
see Proposition 7.5.4).

Proof. Taking into account (7.53), (7.19), and (7.123), a change of variables, (7.114), the
Hölder inequality, and Proposition 7.5.6 imply that

∥Ṽε∥2
X̃ =

∫
R2\Γ1

|∇Ṽε|2 dx = ε−m ∥Vε∥2
Hε

= ε−m(2Eε − 2Lε(Vε))

≤ O(1) + 4ε−m
k1+k2∑

j=1

∫
Sj

ε

|∇v0||γj
+(Vε)| dS = O(1) +O(1)

k1+k2∑
j=1

∫
Sj

1

|x|
m
2 −1|γj

+(Ṽε)| dS

= O(1) +O(1)∥Ṽε∥X̃ , as ε → 0+. (7.132)

Hence {Ṽε}ε∈(0,1] is bounded in X̃ . It follows that, for any sequence {εn}n such that εn → 0
as n → ∞, there exist a subsequence, still denoted by {εn}n, and V ∈ X̃ such that Ṽεn ⇀ V
weakly in X̃ as n → ∞. Therefore, from (7.125), (7.114), and (7.129) we deduce that V
solves the variational equation in (7.115). Furthermore, by (7.124) we have Ṽε − ηṼ0,ε ∈ H̃,
hence (7.130) ensures that V satisfies the condition V − ηΨ0 ∈ H̃. By the uniqueness part of
Proposition 7.5.4 we conclude that V = Ṽ .

Since Ṽ − ηΨ0 ∈ H̃, we may test (7.115) with Ṽ − ηΨ0, thus obtaining∫
R2\Γ1

|∇Ṽ |2 dx =
∫
R2\Γ1

∇Ṽ · ∇(ηΨ0) dx− 2
k1+k2∑

j=1

∫
Sj

1

∇Ψ0 · νjγj
+(Ṽ − ηΨ0) dS. (7.133)
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On the other hand, testing (7.125) with Ṽεn − ηṼ0,εn ∈ H̃ we obtain∫
R2\Γ1

|∇Ṽεn |2 dx =
∫
R2\Γ1

∇Ṽεn · ∇(ηṼ0,εn) dx

− 2
k1+k2∑

j=1

∫
Sj

1

∇Ṽ0,εn · νjγj
+(Ṽεn − ηṼ0,εn) dS. (7.134)

In view of the weak convergence Ṽεn ⇀ Ṽ in X̃ , (7.130), (7.129), and the continuity of the
trace operators (7.113), the limit of the right hand side of (7.134) as n → ∞ is equal to the
right hand side of (7.133), thus proving that Ṽεn → Ṽ strongly in X̃ as n → ∞ by. Since Ṽ is
the unique solution of (7.115), (7.131) follows from the Urysohn Subsequence Principle.

In view of the blow-up analysis performed above, we are in position to prove Theorem
7.1.2.

Proof of Theorem 7.1.2. From (7.17), (7.19), (7.123), and a change of variables it follows that

ε−mEε = 1
2

∫
R2\Γ1

|∇Ṽε|2 dx+ 2
k1+k2∑

j=1

∫
Sj

1

∇Ṽ0,ε · νjγj
+(Ṽε) dS. (7.135)

The convergences (7.131) and (7.129), together with the continuity of the trace operators in
(7.113), allow us to pass to the limit in the right hand side of (7.135), thus yielding

lim
ε→0+

ε−mEε = 1
2

∫
R2\Γ1

|∇Ṽ |2 dx+ 2
k1+k2∑

j=1

∫
Sj

1

∇Ψ0 · νjγj
+(Ṽ ) dS = J(Ṽ ) = E (7.136)

and proving claim (i). Furthermore, by (7.123), a change of variable, (7.129), and (7.130), we
have

ε−mLε(v0) = 2
k1+k2∑

j=1

∫
Sj

1

∇Ṽ0,ε · νjγj
+(Ṽ0,ε) dS (7.137)

= 2
k1+k2∑

j=1

∫
Sj

1

∇Ψ0 · νjγj
+(Ψ0) dS + o(1) = L(Ψ0) + o(1) as ε → 0+.

Claim (ii) follows from (7.20), (7.136), (7.137), and estimate (7.132), which in particular
ensures that ∥Vε∥2

Hε
= O(εm) as ε → 0+.

7.5.5 Continuity of E − L(Ψ0) with respect to rotations of poles

In this subsection we prove the continuity of E − L(Ψ0) with respect to rotations of the
configuration of poles. We fix a configuration of poles {aj} as in (1.6). Then, for every
ζ ∈ [−π, π), we define Ψ(ζ)

0 , L(ζ)(Ψ(ζ)
0 ) and E(ζ) as in (7.26), (7.27), and (7.31), respectively,

for a rotated configuration of poles {aj
ζ}, where aj

ζ are defined as in (1.6) with angles αj + ζ

instead of αj , i.e.
aj

ζ = Rζ(aj),

being Rζ := R0,ζ with R0,ζ as in (7.42), see 7.5.
In the next theorem we prove that the function ζ 7→ E(ζ) − L(ζ)(Ψ(ζ)

0 ) is continuous.
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Figure 7.5: The rotated configuration {aj
ζ}.

Theorem 7.5.8. The function G : [−π, π) → R, G(ζ) := E(ζ) − L(ζ)(Ψ(ζ)
0 ) is continuous.

Proof. Through a rotation, the problem of continuity at any ζ ∈ [−π, π) can be reduced to the
problem of continuity at ζ = 0. Hence, it is enough to prove that limζ→0G(ζ) = E − L(Ψ0).

We have
Ψ(ζ)

0 (r cos t, r sin t) = f(t− ζ)ϕ0(r cos t, r sin t),

where f is defined in (7.22) and

ϕ0(r cos t, r sin t) := β r
m
2 sin

(
m
2 (t− α0)

)
.

With a slight abuse of notation, henceforth we denote by f also the function (r cos t, r sin t) 7→
f(t) defined on R2 \ {0}.

A change of variables yields

E(ζ) = min
{
Iζ(w) : w ∈ X̃ and w − ηf(ϕ0 ◦ Rζ) ∈ H̃

}
,

where η ∈ C∞
c (R2) is a radial cut-off function as in (7.29) and

Iζ(w) = 1
2

∫
R2\Γ1

|∇w|2 dx+ 2
k1+k2∑

j=1

∫
Sj

1

f(∇ϕ0 ◦ Rζ)Mζ · νjγj
+(w) dS,

being Mζ the matrix defined in (7.43). Moreover

L(ζ)(Ψ(ζ)
0 ) = 2

k1+k2∑
j=1

∫
Sj

1

(∇ϕ0 ◦ Rζ)Mζ · νj(ϕ0 ◦ Rζ) dS.

Since, in a neighbourhood of 0,

|∇ϕ0(Rζ(x))| ≤ C|x|
m
2 −1 and |ϕ0(Rζ(x))| ≤ C|x|

m
2 (7.138)

for some C > 0 independent of ζ, from the Dominated Convergence Theorem we deduce that

lim
ζ→0

L(ζ)(Ψ(ζ)
0 ) = L(Ψ0). (7.139)

202



By Proposition 7.5.4, for every ζ there exists a unique Ṽζ ∈ X̃ such that Ṽζ −ηf(ϕ0 ◦Rζ) ∈ H̃
and E(ζ) = Iζ(Ṽζ); furthermore, Ṽζ satisfies∫

R2\Γ1
∇Ṽζ · ∇w dx = −2

k1+k2∑
j=1

∫
Sj

1

f(∇ϕ0 ◦ Rζ)Mζ · νjγj
+(w) dS for all w ∈ H̃. (7.140)

Choosing w = Ṽζ − ηf(ϕ0 ◦ Rζ) in (7.140) we obtain∫
R2\Γ1

|∇Ṽζ |2 dx =
∫
R2\Γ1

∇Ṽζ · ∇(ηf(ϕ0 ◦ Rζ)) dx

− 2
k1+k2∑

j=1

∫
Sj

1

f(∇ϕ0 ◦ Rζ)Mζ · νjγj
+(Ṽζ) dS

+ 2
k1+k2∑

j=1

∫
Sj

1

f(∇ϕ0 ◦ Rζ)Mζ · νjγj
+(f(ϕ0 ◦ Rζ)) dS. (7.141)

Using Young’s inequality, estimate (7.138), and the continuity of the trace operators (7.113),
from the above identity we deduce that

∥Ṽζ∥X̃ ≤ C

for some C > 0 independent of ζ. It follows that every sequence ζn → 0 admits a subsequence
{ζnℓ

}ℓ such that Ṽζnℓ
⇀ W weakly in X̃ as ℓ → ∞, for some W ∈ X̃ . On account of (7.138)

and (7.113), the Dominated Convergence Theorem yields∫
Sj

1

f(∇ϕ0 ◦ Rζnℓ
)Mζnℓ

· νjγj
+(w) dS →

∫
Sj

1

f∇ϕ0 · νjγj
+(w) dS =

∫
Sj

1

∇Ψ0 · νjγj
+(w) dS

as ℓ → ∞, for every j = 1, . . . k1 + k2 and w ∈ H̃. By choosing ζ = ζnℓ
in (7.140) and letting

ℓ → ∞ we obtain that∫
R2\Γ1

∇W · ∇w dx = −2
k1+k2∑

j=1

∫
Sj

1

∇Ψ0 · νjγj
+(w) dS for all w ∈ H̃. (7.142)

Furthermore, since Ṽζ −ηf(ϕ0 ◦Rζ) ∈ H̃, H̃ is a closed subspace of X̃ , and ηf(ϕ0 ◦Rζ) → ηΨ0
as ζ → 0 in X̃ by the Dominated Convergence Theorem, we have

W − ηΨ0 ∈ H̃. (7.143)

From (7.142)-(7.143) and the uniqueness part of Proposition 7.5.4 we deduce that W = Ṽ .
Having uniquely identified the weak limit independently of the subsequence, by the Urysohn
subsequence principle we conclude that

Ṽζ ⇀ Ṽ weakly in X̃ as ζ → 0. (7.144)

The weak convergence (7.144) allows us to pass to the limit as ζ → 0 on the right hand side
of (7.141), thus proving that

lim
ζ→0

∫
R2\Γ1

|∇Ṽζ |2 dx =
∫
R2\Γ1

∇Ṽ · ∇(ηΨ0) dx− 2
k1+k2∑

j=1

∫
Sj

1

∇Ψ0 · νjγj
+(Ṽ − Ψ0) dS

=
∫
R2\Γ1

|∇Ṽ |2 dx, (7.145)
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the last equality being a consequence of (7.115) tested with w = Ṽ − ηΨ0. From (7.145) it
follows that limζ→0 E(ζ) = limζ→0 Iζ(Ṽζ) = J(Ṽ ) = E , which, together with (7.139), yields
the conclusion.

When k2 = 0 and the poles {aj}j=1,...,k1 are on the tangents to nodal lines of v0 (i.e. on
the nodal set of Ψ0), we have Ψ0 = 0 on Sj

1 for all j = 1, . . . , k1; on the other hand, if the
poles are on the bisectors between nodal lines, then ∇Ψ0 · νj = 0 on Sj

1 for all j = 1, . . . , k1.
This leads to Proposition 7.1.3, which determines, in these particular cases, the sign of the
dominant term in the asymptotic expansion obtained in Theorem 7.1.2, and, consequently,
exploits the continuity result established in Theorem 7.5.8 to find configurations of poles for
which the eigenvalue variation is an infinitesimal of higher order.

Proof of Proposition 7.1.3. (i) If αj ∈ {α0 + ℓ2π
m : ℓ = 0, 1, 2, . . . ,m − 1} for all j ∈

{1, . . . , k1}, then Ψ0 = 0 on Sj
1 for all j ∈ {1, . . . , k1}, so that L(Ψ0) = 0 and ηΨ0 + H̃ =

H̃. It follows that
E − L(Ψ0) = E = min

H̃
J. (7.146)

Furthermore, ∇Ψ0 · νj ̸≡ 0 on Sj
1 for all j ∈ {1, . . . , k1}, see (7.127), hence L ̸≡ 0 in

H̃. Fixing some w ∈ H̃ such that L(w) ̸= 0, we have then J(tw) = t2

2
∫
R2\Γ1

|∇w|2 dx+
tL(w) < 0 for some small t, thus implying that E = minH̃ J < 0. Once we have
established that E − L(Ψ0) = E < 0, from the asymptotic expansion of Theorem 7.1.2-
(ii) we deduce that λε,n0 < λ0,n0 for sufficiently small ε > 0.

(ii) If αj ∈ {α0+(1+2ℓ) π
m : ℓ = 0, 1, 2, . . . ,m−1} for all j ∈ {1, . . . , k1}, then ∇Ψ0 ·νj ≡ 0 on

Sj
1 for all j ∈ {1, . . . , k1}, see (7.127). It follows that L ≡ 0, and hence J(w) = 1

2∥w∥2
X̃

.
Since, in this case, Ψ0 ̸≡ 0 on Sj

1 for all j ∈ {1, . . . , k1}, we have w ̸≡ 0 for every
w ∈ ηΨ0 + H̃. Therefore

E − L(Ψ0) = E = min
ηΨ0+H̃

J = 1
2 min

w∈ηΨ0+H̃
∥w∥2

X̃ > 0. (7.147)

From the asymptotic expansion of Theorem 7.1.2-(ii) we finally deduce that λε,n0 > λ0,n0

for sufficiently small ε > 0.

(iii) Let us fix a configuration {aj}k
j=1 with k = k1 ≤ m odd and αj ∈ {α0 + ℓ2π

m : 0 ≤ ℓ ≤
m − 1} for all j ∈ {1, . . . , k1} as in (i). Then the rotated configuration {aj

π/m} is as in
(ii). By (i)-(ii) we have G(0) < 0 and G( π

m) > 0. Since G is continuous by Theorem
7.5.8, Bolzano’s Theorem ensures the existence of some ζ0 ∈ (0, π

m) such that G(ζ0) = 0,
so that the angles {αj + ζ0 : j = 1, . . . , k} are as we are looking for.

Remark 7.5.9. 7.6 and 7.7 provide an example that helps to better visualize the result in
7.1.3. In 7.6 we zoom in near a point (the origin) where the limit eigenfunction v0 vanishes of
order 3/2, namely (7.21) holds with m = 3. We consider the case α0 = 0. The function Ψ0 as
in (7.26) is the 3/2-homogeneous limit profile describing the local behavior of v0. In the image
on the left, the black lines are the nodal lines of v0, which are tangent to the nodal lines of Ψ0
(in green). The dotted lines denote the bisectors of the nodal lines of Ψ0. In the image on the
right, we fix an admissible configuration of poles {aj}j=1,2,3 with k = 3 and αj = 2π(j− 1)/3
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Ψ0 = 0
∇Ψ0 · νj = 0

E − L(Ψ0) < 0

E − L(Ψ0) > 0

Figure 7.6: Nodal set of Ψ0 and sign of E − L(Ψ0) (m = k = 3, α0 = 0).
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E − L(Ψ0) < 0
E − L(Ψ0) > 0
E − L(Ψ0) = 0

Figure 7.7: A visualization of Proposition 2.3.

for j = 1, 2, 3. From 7.1.3 we know that, if all the poles lie on the nodal set of Ψ0, then the
coefficient E −L(Ψ0) of the leading term in the asymptotic expansion stated in 7.1.2 is strictly
negative. On the other hand, if all the poles lie on the bisectors of the nodal lines, then the
coefficient E −L(Ψ0) is strictly positive. In 7.7 on the left, in the first picture (red arrows) we
have our initial fixed configuration, which then provides a negative coefficient. In the second
picture (blue arrows) we consider a rotation about the origin by an angle π/m = π/3: the
rotated configuration ends up with all the poles lying on the bisectors, thus giving a positive
coefficient E − L(Ψ0). Furthermore, the continuity result in 7.5.8 ensures the existence of
some ζ0 ∈ (0, π/3) such that, if we rotate the initial configuration by an angle ζ0, we find a
configuration of poles for which E −L(Ψ0) = 0: this is represented in the third picture on the
left (yellow arrows). Finally, the right picture in 7.7 presents the behavior of the perturbed
eigenvalue in the three cases previously described. We point out that, when E − L(Ψ0) = 0
(yellow graph), it is currently not known what is the vanishing order of λε,n0 − λ0,n0 .
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7.5.6 Blow-up and convergence rate for eigenfunctions

From the blow-up analysis for the potential Vε performed in Subsection 7.5.4 and the energy
estimate given in (7.81), we derive the following blow-up result for scaled eigenfunctions,
together with a sharp estimate for their rate of convergence in the H1-norm.

Proposition 7.5.10. Under assumption (7.77), let k be odd and v0 be an eigenfunction of
(7.14) associated to the eigenvalue λ0 = λ0,n0 with ∥v0∥L2(Ω) = 1. For ε > 0 small, let
λε = λε,n0 and vε be an eigenfunction of (7.10) associated to λε and chosen as in (7.78). Let
m ∈ N be given in Proposition 7.2.6 for v = v0. Then

ε− m
2 vε(εx) → Ψ0 − Ṽ as ε → 0+ in H1(Dρ \ Γ1) for all ρ > 0, (7.148)

where Ψ0 is defined in (7.26) and Ṽ is the unique solution to (7.115). Furthermore,

lim
ε→0+

ε− m
2 ∥vε − v0∥H1 = ∥Ṽ ∥X̃ . (7.149)

Proof. Using the same notation as in the proof of Theorem 7.4.2, let ψε = v0 − Vε, where Vε

is defined as in Proposition 7.3.2. From (7.81) it follows that

∥Πεψε − ψε∥2
Hε

= o
(
∥Vε∥2

Hε

)
as ε → 0+.

Therefore, defining
Wε(x) := ε− m

2 (Πεψε − ψε)(εx), x ∈ 1
ε Ω,

and extending trivially Wε in R2 \ 1
ε Ω, we have Wε ∈ H̃ and, in view of Proposition 7.5.7,

∥Wε∥2
X̃ = ε−m∥Πεψε − ψε∥2

Hε
= ε−mo

(
∥Vε∥2

Hε

)
= ∥Ṽε∥2

X̃ o(1) = o(1)

as ε → 0+. By continuity of the restriction operator in (7.112) we deduce that

Wε → 0 as ε → 0+ in H1(Dρ \ Γ1) for all ρ > 0. (7.150)

Let us define
Uε(x) := ε− m

2 (Πεψε)(εx), x ∈ 1
ε Ω, (7.151)

and extend trivially Uε in R2 \ 1
ε Ω. We have

Uε = Ṽ0,ε(x) − Ṽε +Wε,

where Ṽ0,ε and Ṽε are defined in (7.123). Combining (7.130), (7.131), and (7.150), we conclude
that

Uε → Ψ0 − Ṽ as ε → 0+ in H1(Dρ \ Γ1) for all ρ > 0. (7.152)

From (7.82) it follows that∫
Ω
v0Πεψε dx = 1 + o (∥Vε∥Hε) as ε → 0+,

and hence, for ε > 0 small enough,∫
Ω

Πεψε

∥Πεψε∥L2(Ω)
v0 dx > 0.
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Since vε is the unique eigenfunction of (7.10) associated to λε satisfying (7.78), we conclude
that necessarily

vε = Πεψε

∥Πεψε∥L2(Ω)
. (7.153)

The convergence stated in (7.148) follows from (7.153), (7.151), (7.152), and (7.83).
Moreover, (7.83) implies that

∥vε − Πεψε∥H1 =
|1 − ∥Πεψε∥L2(Ω)|

∥Πεψε∥L2(Ω)
∥Πεψε∥H1 (7.154)

=
∣∣1 − ∥Πεψε∥L2(Ω)

∣∣∥vε∥Hε = o(∥Vε∥Hε) as ε → 0+,

whereas (7.81) yields that

∥Πεψε −v0∥2
H1 = ∥Vε∥2

Hε
+∥Πεψε −ψε∥2

Hε
−2(Vε,Πεψε −ψε)Hε = ∥Vε∥2

Hε
+o(∥Vε∥2

Hε
) (7.155)

as ε → 0+. Combining (7.154) and (7.155) we deduce that

∥vε − v0∥2
H1 = ∥Vε∥2

Hε
+ o(∥Vε∥2

Hε
) as ε → 0+. (7.156)

Letting Ṽε be as in (7.123), from (7.156) and (7.131) we deduce that

ε−m∥vε − v0∥2
H1 = ∥Ṽε∥2

X̃ (1 + o(1)) = ∥Ṽ ∥2
X̃ (1 + o(1)) as ε → 0+,

thus proving (7.149).

Going back to the eigenfunctions of the original magnetic problem via the inverse of
transformation (7.9), we deduce Theorem 7.1.4 from Proposition 7.5.10.

Proof of Theorem 7.1.4. If u0 is an eigenfunction of (1.10) associated to the eigenvalue λ0,n0

such that
∫

Ω |u0|2 dx = 1, and uε is the eigenfunction of (1.9) associated to λn0,ε satisfying
(7.32), then vε := e−iΘεuε is an eigenfunction of (7.10) associated to λn0,ε and v0 := e−iΘ0u0
is an eigenfunction of (7.14) associated to λn0,0 such that condition (7.78) is satisfied. From
Proposition 7.5.10 it follows that vε satisfies (7.148) and (7.149), in which we replace vε

with e−iΘεuε and v0 with e−iΘ0u0 to get exactly (7.33) and (7.34), taking into account that
Θε(εx) = Θ1(x) for all x ∈ R2 \ {aj : j = 1, . . . , k}.

7.6 The case of two poles
The purpose of this section is to prove Theorems 7.1.6 and 7.1.7. We consider the case k1 = 0
and k2 = 1, with the configuration of poles as in assumption (7.36), being r1 ∈ (0, R) and
ε ∈ (0, 1]. For the sake of simplicity, let us denote

T := T 1, γ+ := γ1
+, γ− := γ1

−, and ν := ν1 = (0, 1),

see (7.4). We first consider a linear functional Lε,h,Λ more general than the one introduced
in (7.16), defined for a generic domain Λ and with the limit eigenfunction v0 replaced by
a generic function h; the corresponding minimal energy Eε,h,Λ thus generalizes the energy
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Eε defined in (7.19). For every simply connected open bounded domain Λ ⊂ R2 such that
BR ⊆ Λ and every h ∈ H1

0 (Λ) ∩ C∞(Λ), let

Lε,h,Λ : H1,Λ → R, Lε,h,Λ(w) := 2
∫

Sε

∂h

∂x2
γ+(w) dS

and
Jε,h,Λ : Hε,Λ → R, Jε,h,Λ(w) := 1

2

∫
Λ\Sε

|∇w|2 dx+ Lε,h,Λ(w),

where, for all ε ∈ (0, 1], Sε is defined in (7.37) and the functional space Hε,Λ is the closure of{
w ∈ H1(Λ \ Sε) : w = 0 on a neighbourhood of ∂Λ

}
with respect to the norm ∥w∥H1(Ω\Sε). Then the minimization problem

inf
{
Jε,h,Λ(w) : w ∈ Hε,Λ and w − h ∈ H̃ε,Λ

}
(7.157)

with H̃ε,Λ :=
{
w ∈ Hε,Λ : T (w) = 0 on Sε

}
, is uniquely achieved, as stated in the following

proposition. We omit the proof, being similar to the one of Proposition 7.3.2.

Proposition 7.6.1. The infimum in (7.157) is achieved by a unique Vε,h,Λ ∈ Hε,Λ. Further-
more, Vε,h,Λ weakly solves the problem

−∆Vε,h,Λ = 0, in Λ \ Sε,

Vε,h,Λ = 0, on ∂Λ,
T (Vε,h,Λ − h) = 0, on Sε,

T
(

∂Vε,h,Λ
∂x2

− ∂h
∂x2

)
= 0, on Sε,

(7.158)

in the sense that Vε,h,Λ ∈ Hε,Λ, Vε,h,Λ − h ∈ H̃ε,Λ, and∫
Λ\Sε

∇Vε,h,Λ · ∇w dx = −Lε,h,Λ(w) for all w ∈ H̃ε,Λ. (7.159)

For every Λ, h as above and ε ∈ (0, 1], let

Eε,h,Λ := Jε,h,Λ(Vε,h,Λ). (7.160)

For every L > 0 and ε > 0, let Eε(L) be the ellipse defined as

Eε(L) :=
{

(x1, x2) ∈ R2 : x2
1

L2 + r2
1ε

2 + x2
2
L2 < 1

}
.

We are going to compute Eε,Pm,Eε(L), where Pm is a homogeneous polynomial of degree m ≥ 1.
We shall later apply such estimate with Pm being the Taylor polynomial of u0 centered at 0
of order m, with u0 and m as in 7.1.2.

Proposition 7.6.2. Let m ∈ N, m ≥ 1, and let Pm be a homogeneous polynomial of degree
m, i.e.

Pm(x1, x2) :=
m∑

j=0
ℓjx

m−j
1 xj

2, (7.161)
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for some ℓ0, ℓ1, . . . , ℓm ∈ R. Then, for every L > 0, we have∫
Eε(L)\Sε

|∇Vε,Pm,Eε(L)|2 dx = π(εr1)2m
(
ℓ20

m∑
j=1

j|cj |2 + ℓ21

m∑
j=1

|dj |2

j

)
+ o(ε2m) (7.162)

as ε → 0+, where

cj = 1
π

∫ 2π

0
(cos η)m cos(jη) dη for every j ∈ N, (7.163)

dj = 1
π

∫ 2π

0
(cos η)m−1 sin η sin(jη) dη for every j ∈ N \ {0}. (7.164)

Proof. We consider elliptic coordinates (ξ, η) defined as{
x1 = εr1 cosh(ξ) cos(η),
x2 = εr1 sinh(ξ) sin(η),

ξ ≥ 0, η ∈ [0, 2π), (7.165)

see e.g. [3, Section 2.2]. In this coordinates Sε is described by the conditions

ξ = 0, η ∈ [0, 2π),

whereas Eε(L) is described by

ξ ∈ [0, ξε), η ∈ [0, 2π),

where ξε is such that r1ε sinh(ξε) = L, that is

ξε = arcsinh
(
L

r1ε

)
= log

(
L

r1ε
+
√

1 + L2

r2
1ε

2

)
. (7.166)

In particular ∂Eε(L) is described by the conditions

ξ = ξε, η ∈ [0, 2π).

The map
Fε : [0, ξε) × [0, 2π) → Eε(L), Fε(ξ, η) = (x1, x2),

defined by (7.165), has a Jacobian matrix of the form

JFε(ξ, η) = εr1

√
cosh2 ξ − cos2 η O(ξ, η)

for some orthogonal matrix O(ξ, η), and det JFε(ξ, η) = ε2r2
1(cosh2 ξ−cos2 η). In particular Fε

is a conform mapping and JFε(ξ, η) is an invertible matrix if (ξ, η) ̸= (0, 0) and (ξ, η) ̸= (0, π).
Let V̂ε,Pm,L := Vε,Pm,Eε(L) ◦ Fε, where Vε,Pm,Eε(L) is the solution of (7.158) in the case

Λ = Eε(L) and h = Pm. We observe that, since Fε(ξ, η) ∈ R2
+ if η ∈ (0, π) and Fε(ξ, η) ∈ R2

−
if η ∈ (π, 2π),

V̂ε,Pm,L(0, η) =
{
γ+(Vε,Pm,Eε(L))(εr1 cos η, 0), if η ∈ (0, π),
γ−(Vε,Pm,Eε(L))(εr1 cos η, 0), if η ∈ (π, 2π).
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Furthermore,

∂V̂ε,Pm,L

∂ξ
(0, η) =


εr1(sin η) γ+

(
∂Vε,Pm,Eε(L)

∂x2

)
(εr1 cos η, 0), if η ∈ (0, π),

εr1(sin η) γ−

(
∂Vε,Pm,Eε(L)

∂x2

)
(εr1 cos η, 0), if η ∈ (π, 2π).

We also note that, for every η ∈ [0, 2π),

Pm(Fε(0, η)) = (εr1)mℓ0(cos η)m and ∂Pm

∂x2
(Fε(0, η)) = ℓ1(εr1)m−1(cos η)m−1.

Therefore, V̂ε,Pm,L solves the problem

−∆V̂ε,Pm,L = 0, in (0, ξε) × (0, 2π),
V̂ε,Pm,L(ξε, η) = 0, for all η ∈ [0, 2π),
V̂ε,Pm,L(ξ, 0) = V̂ε,Pm,L(ξ, 2π), for all ξ ∈ (0, ξε),
V̂ε,Pm,L(0, η) + V̂ε,Pm,L(0, 2π − η) = 2ℓ0(εr1)m(cos η)m, for all η ∈ (0, π),
∂V̂ε,Pm,L

∂ξ
(0, η) − ∂V̂ε,Pm,L

∂ξ
(0, 2π − η)

= 2ℓ1(εr1)m(cos η)m−1 sin η, for all η ∈ (0, π).

(7.167)

Let us consider the Fourier expansion of (εr1)−mV̂ε,Pm,L with respect to the variable η

1
(εr1)m

V̂ε,Pm,L(ξ, η) = a0,ε(ξ)
2 +

∞∑
j=1

(
aj,ε(ξ) cos(jη) + bj,ε(ξ) sin(jη)

)
,

where

aj,ε(ξ) := (εr1)−m

π

∫ 2π

0
V̂ε,Pm,L(ξ, η) cos(jη) dη for all j ∈ N,

bj,ε(ξ) := (εr1)−m

π

∫ 2π

0
V̂ε,Pm,L(ξ, η) sin(jη) dη for all j ∈ N \ {0}.

Since cos(2π − η) = cos η for any η ∈ (0, π), from (7.167) it follows that

a0,ε(0) + 2
∞∑

j=1
aj,ε(0) cos(jη) = 2ℓ0(cos η)m for all η ∈ (0, 2π),

hence {aj,ε(0)}j∈N are the Fourier coefficients of ℓ0(cos η)m with respect to the orthonormal
basis

{ 1√
2π
, 1√

π
cos(jη), 1√

π
sin(jη)

}
j∈N\{0} of L2(0, 2π), i.e.

aj,ε(0) = ℓ0cj for all j ∈ N,

with cj as in (7.163). In particular

aj,ε(0) = ℓ0cj = 0 if j > m. (7.168)
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On the other hand, the last condition in (7.167) reads as

∞∑
j=1

b′
j,ε(0) sin(jη) = ℓ1(cos η)m−1 sin η for all η ∈ (0, 2π).

It follows that b′
j,ε(0) are independent of ε and

b′
j,ε(0) = ℓ1dj for all j ∈ N \ {0},

with dj as in (7.164); hence

b′
j,ε(0) = ℓ1dj = 0 if j > m. (7.169)

From the equation in (7.167) it follows that

0 = 1
(εr1)m

∆V̂ε,Pm,L

=
a′′

0,ε(ξ)
2 +

∞∑
j=1

(
(a′′

j,ε(ξ) − j2aj,ε(ξ)) cos(jη) + (b′′
j,ε(ξ) − j2bj,ε(ξ)) sin(jη)

)
,

hence

a0,ε(ξ) = −a0,ε(0)
ξε

ξ + a0,ε(0) = −ℓ0c0
ξε

ξ + ℓ0c0 for all ξ ∈ (0, ξε), (7.170)

aj,ε(ξ) = ℓ0cj

(
ejξ

1 − e2jξε
+ e−jξ

1 − e−2jξε

)
for all ξ ∈ (0, ξε) and j ∈ N \ {0},

bj,ε(ξ) = ℓ1dj

j

(
ejξ

1 + e2jξε
− e−jξ

1 + e−2jξε

)
for all ξ ∈ (0, ξε) and j ∈ N \ {0},

with ξε as in (7.166). Then, by (7.168) and (7.169), aj,ε ≡ bj,ε ≡ 0 for all j > m, so that

1
(εr1)m

V̂ε,Pm,L(ξ, η) = a0,ε(ξ)
2 +

m∑
j=1

(
aj,ε(ξ) cos(jη) + bj,ε(ξ) sin(jη)

)
.

By a change of variables and the Parseval identity,∫
Eε(L)\Sε

|∇Vε,Pm,Eε(L)|2 dx =
∫ ξε

0

∫ 2π

0
|∇V̂ε,Pm,L|2 dη dξ (7.171)

= (εr1)2mπ

2

∫ ξε

0
|a′

0,ε(ξ)|2 dξ

+ (εr1)2mπ
m∑

j=1

∫ ξε

0

(
|a′

j,ε(ξ)|2 + j2|bj,ε(ξ)|2 + |b′
j,ε(ξ)|2 + j2|aj,ε(ξ)|2

)
dξ.

Let us compute each integral in the above formula. In view of (7.170) and (7.166), it is clear
that ∫ ξε

0
|a′

0,ε(ξ)|2 dη = ℓ20c
2
0

ξε
= ℓ20c

2
0

| log ε| +O

( 1
| log ε|2

)
as ε → 0+.
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Furthermore, for every j ∈ N \ {0},

j2
∫ ξε

0
|bj,ε(ξ)|2 dξ = ℓ21d

2
j

∫ ξε

0

(
ejξ

1 + e2jξε
− e−jξ

1 + e−2jξε

)2

dξ

=
ℓ21d

2
j

(1 + e2jξε)2

∫ ξε

0
e2jξ dξ +

ℓ21d
2
j

(1 + e−2jξε)2

∫ ξε

0
e−2jξ dξ −

2ℓ21d2
jξε

2 + e−2jξε + e2jξε

=
ℓ21d

2
j

2j

( 1
(1 + e2jξε)2 (e2jξε − 1) + 1

(1 + e−2jξε)2 (1 − e−2jξε)
)

−
2ℓ21d2

jξε

2 + e−2jξε + e2jξε

=
ℓ21d

2
j

2j (1 + o(1)) as ε → 0+

and similarly

∫ ξε

0
|b′

j,ε(ξ)|2 dξ = ℓ21d
2
j

∫ ξε

0

(
ejξ

1 + e2jξε
+ e−jξ

1 + e−2jξε

)2

dξ =
ℓ21d

2
j

2j (1 + o(1)) as ε → 0+.

Finally, for every j ∈ N \ {0},∫ ξε

0
|a′

j,ε(ξ)|2 dξ = j2ℓ20c
2
j

∫ ξε

0

(
ejξ

1 − e2jξε
− e−jξ

1 − e−2jξε

)2

dξ = ℓ20c
2
j

j

2(1 + o(1)),

j2
∫ ξε

0
|aj,ε(ξ)|2 dξ = j2ℓ20c

2
j

∫ ξε

0

(
ejξ

1 − e2jξε
+ e−jξ

1 − e−2jξε

)2

dξ = ℓ20c
2
j

j

2(1 + o(1)),

as ε → 0+, as shown in the proof of [3, Lemma 2.3]. Replacing the above estimates in (7.171)
we obtain (7.162).

Proposition 7.6.3. Let m ∈ N \ {0}. For every j ∈ N \ {0}, let cj and dj be as in (7.163)
and (7.164), respectively. Then

m∑
j=1

j|cj |2 = m

4m−1

(
m− 1
⌊m−1

2 ⌋

)2

, (7.172)

m∑
j=1

1
j

|dj |2 = 1
m4m−1

(
m− 1
⌊m−1

2 ⌋

)2

. (7.173)

Proof. For the proof of (7.172) we refer to [4, Proposition A.3]. To prove (7.173), we observe
that, in view of (7.163),

(cos η)m = c0
2 +

m∑
j=1

cj cos(jη) for all η ∈ [0, 2π].

Deriving the previous identity with respect to η, we obtain

(cos η)m−1 sin η = 1
m

m∑
j=1

jcj sin(jη) =
m∑

j=1
dj sin(jη) for all η ∈ [0, 2π],

in view of (7.164). It follows that dj = j
mcj for all j = 1, . . . ,m, hence (7.173) follows from

(7.172).
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Remark 7.6.4. Let m ∈ N, m ≥ 1, and let Pm be a homogeneous polynomial of degree m
as in (7.161). Let Λ ⊂ R2 be a simply connected open bounded domain such that BR ⊆ Λ.

(i) If the coefficient ℓ0 in (7.161) is zero, then Pm ≡ 0 on Sε for all ε ∈ (0, 1]. Hence
Vε,Pm,Λ ∈ H̃ε,Λ and, in view of (7.159),

∫
Λ\Sε

|∇Vε,Pm,Λ|2 dx = −Lε,Pm,Λ(Vε,Pm,Λ), so
that

Eε,Pm,Λ = −1
2

∫
Λ\Sε

|∇Vε,Pm,Λ|2 dx.

(ii) If the coefficient ℓ1 in (7.161) is zero, then ∂Pm
∂x2

≡ 0 on Sε for all ε ∈ (0, 1]. Hence
Lε,Pm,Λ ≡ 0 and

Eε,Pm,Λ = 1
2

∫
Λ\Sε

|∇Vε,Pm,Λ|2 dx.

Proposition 7.6.5. Let Ω ⊂ R2 be a simply connected open bounded domain with 0 ∈ BR ⊆
Ω. For every ε ∈ (0, 1), let Sε be defined in (7.37). Let Pm be a homogeneous polynomial
of degree m as in (7.161) and Eε,Pm,Ω be defined in (7.160) with Λ = Ω and h = Pm. Then,
letting ℓ0 and ℓ1 be as in (7.161), we have

(i) if ℓ0 = 0, then

Eε,Pm,Ω = −π

2 r
2m
1 ℓ21ε

2m 1
m4m−1

(
m− 1
⌊m−1

2 ⌋

)2

+ o(ε2m) as ε → 0+;

(ii) if ℓ1 = 0, then

Eε,Pm,Ω = π

2 r
2m
1 ℓ20ε

2m m

4m−1

(
m− 1
⌊m−1

2 ⌋

)2

+ o(ε2m) as ε → 0+.

Proof. The set Ω is open and 0 ∈ Ω, hence there exist L1, L2 > 0 such that, for every ε ∈ (0, 1],
Sε ⊂ Eε(L1) ⊂ Ω ⊂ Eε(L2) (e.g. we can choose any 0 < L1 <

√
R2 − r2

1 and L2 = diam Ω).
From (7.157), (7.160), and the space inclusions Hε,Eε(L1) ⊂ Hε,Ω ⊂ Hε,Eε(L2), H̃ε,Eε(L1) ⊂
H̃ε,Ω ⊂ H̃ε,Eε(L2) obtained by trivial extension, we deduce that, for every ε ∈ (0, 1],

Eε,Pm,Eε(L2) ≤ Eε,Pm,Ω ≤ Eε,Pm,Eε(L1). (7.174)

If ℓ0 = 0, from Remark 7.6.4, (7.162), and (7.173) it follows that, for i = 1, 2,

Eε,Pm,Eε(Li) = −1
2

∫
Eε(Li)\Sε

|∇Vε,Pm,Eε(Li)|
2 dx

= −π

2 (εr1)2mℓ21

( m∑
j=1

|dj |2

j

)
+ o(ε2m) = −π

2 r
2m
1 ℓ21ε

2m 1
m4m−1

(
m− 1
⌊m−1

2 ⌋

)2

+ o(ε2m)

as ε → 0+, thus proving (i) in view of (7.174).
On the other hand, if ℓ1 = 0, then Remark 7.6.4, (7.162), and (7.172) imply that, for

i = 1, 2,

Eε,Pm,Eε(Li) = 1
2

∫
Eε(Li)\Sε

|∇Vε,Pm,Eε(Li)|
2 dx

= π

2 (εr1)2mℓ20

( m∑
j=1

j|cj |2
)

+ o(ε2m) = π

2 r
2m
1 ℓ20ε

2m m

4m−1

(
m− 1
⌊m−1

2 ⌋

)2

+ o(ε2m)
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as ε → 0+, thus proving (ii) in view of (7.174).

Let u0 be as in (7.35) with u0(0) = 0 and m,β, α0 be as in (7.38). Let Tm be the Taylor
polynomial of u0 centered at 0 of order m written in (7.39). In particular Tm is of the form
(7.161) with

ℓj = 1
(m− j)!j!

∂mu0

∂xm−j
1 ∂xj

2
(0).

If α0 = jπ
m for some j ∈ {0, 1, . . . , 2m− 1}, then, by Remark 7.1.5,

ℓ0 = Tm(1, 0) = 0

and
ℓ1 = ∂Tm

∂x2
(1, 0) = ∇Tm(1, 0) · (0, 1) = mβ cos(jπ) = (−1)jmβ.

Hence, by Proposition 7.6.5, in this case we have

Eε,Tm,Ω = −π

2 r
2m
1 ε2m mβ2

4m−1

(
m− 1
⌊m−1

2 ⌋

)2

+ o(ε2m) as ε → 0+. (7.175)

On the other hand, if α0 = π
2m + jπ

m for some j ∈ {0, 1, . . . , 2m− 1}, then, by Remark 7.1.5,

ℓ0 = Tm(1, 0) = −β sin
(

π
2 + jπ

)
= (−1)j+1β

and
ℓ1 = ∂Tm

∂x2
(1, 0) = mβ cos

(
π
2 + jπ

)
= 0.

In this case, Proposition 7.6.5 then provides the expansion

Eε,Tm,Ω = π

2 r
2m
1 ε2m mβ2

4m−1

(
m− 1
⌊m−1

2 ⌋

)2

+ o(ε2m) as ε → 0+. (7.176)

Let g := u0 − Tm. Since u0 is smooth and Tm is its Taylor polynomial at 0 of order m, then

g(x) = O(|x|m+1) and |∇g(x)| = O(|x|m) as x → 0. (7.177)

Proposition 7.6.6. Let m and α0 be as in (7.38). For every ε ∈ (0, 1], let Vε,Tm,Ω and Eε,Tm,Ω
be as in (7.157) and (7.160), with Λ = Ω and h = Tm, and let Vε = Vε,u0,Ω and Eε = Eε,u0,Ω
be as in (7.18) and (7.19), respectively. Then

∥Vε − Vε,Tm,Ω∥2
Hε

= O(ε2m+1) = o(ε2m) as ε → 0+ (7.178)

and, if either α0 = jπ
m or α0 = π

2m + jπ
m for some j ∈ {0, 1, . . . , 2m− 1},

∥Vε∥Hε = O(εm) as ε → 0+, (7.179)
Eε − Eε,Tm,Ω = o(ε2m) as ε → 0+. (7.180)

214



Proof. Let Wε := Vε − Vε,Tm,Ω. Then Wε satisfies (7.159) with h := g. Let ηε be as in (7.68).
Testing (7.159) with w = Wε − ηεg, by Young’s Inequality and (7.3) we obtain

∥Wε∥2
Hε

=
∫

Ω\Sε

ηε∇Wε ·∇g dx+
∫

Ω\Sε

g∇Wε ·∇ηε dx−2
∫

Sε

∂g

∂x2
γ+(Wε) dS+2

∫
Sε

∂g

∂x2
g dS

≤ 1
2 ∥Wε∥2

Hε
+ C

(∫
Ω
η2

ε |∇g|2 dx+
∫

Ω
g2|∇ηε|2 dx+

∫
Sε

∣∣∣∣ ∂g∂x2

∣∣∣∣2 dS
)

+ 2
∫

Sε

∣∣∣∣ ∂g∂x2

∣∣∣∣ |g| dS,

for some positive constant C > 0. Hence (7.178) follows from (7.68) and (7.177).
We have

Eε − Eε,Tm,Ω = 1
2
(
∥Vε∥2

Hε
− ∥Vε,Tm,Ω∥2

Hε

)
+ 2

∫
Sε

(
∂u0
∂x2

γ+(Vε) − ∂Tm

∂x2
γ+(Vε,Tm,Ω)

)
dS. (7.181)

By Remark 7.6.4 and Proposition 7.6.5 we have that, if either α0 = jπ
m or α0 = π

2m + jπ
m for

some j ∈ {0, 1, . . . , 2m − 1}, then ∥Vε,Tm,Ω∥Hε =
√

2|Eε,Tm,Ω| = O(εm) as ε → 0+. Then,
(7.179) follows from (7.178). Using again (7.178) we conclude that

∥Vε∥2
Hε

− ∥Vε,Tm,Ω∥2
Hε

= (Vε − Vε,Tm,Ω, Vε + Vε,Tm,Ω)Hε = o(ε2m) as ε → 0+. (7.182)

Furthermore, fixing some p > 2 and letting p′ = p
p−1 , Hölder’s inequality, (7.177), and the

continuity of the trace operators (7.3) imply that∣∣∣∣ ∫
Sε

(
∂u0
∂x2

γ+(Vε) − ∂Tm

∂x2
γ+(Vε,Tm,Ω)

)
dS

∣∣∣∣
=
∣∣∣∣∫

Sε

(
∂g

∂x2
γ+(Vε) + ∂Tm

∂x2
(γ+(Vε) − γ+(Vε,Tm,Ω))

)
dS

∣∣∣∣
≤
∫

Sε

∣∣∣∣ ∂g∂x2

∣∣∣∣ |γ+(Vε)| dS +
∫

Sε

∣∣∣∣∂Tm

∂x2

∣∣∣∣ |γ+(Wε)| dS

≤ const
(
ε

m+ 1
p′

(∫
Sε

|γ+(Vε)|p dS
)1/p

+ ε
m−1+ 1

p′

(∫
Sε

|γ+(Wε)|p dS
)1/p

)

≤ const
(
ε

m+ 1
p′ ∥Vε∥Hε

+ ε
m−1+ 1

p′ ∥Wε∥Hε

)
= O

(
ε

2m+ 1
p′
)

+O
(
ε

2m− 1
2 + 1

p′
)

= o
(
ε2m) as ε → 0+, (7.183)

where we used estimates (7.179) and (7.178). Combining (7.181), (7.182), and (7.183) we
finally obtain (7.180).

Proof of Theorems 7.1.6 and 7.1.7. Since we are considering only two opposite poles on
the same line, we have v0 = e−iΘ0u0 = u0. Let m ∈ N \ {0} and α0 ∈ [0, π

m) be as in (7.38).
If α0 = jπ

m or α0 = π
2m + jπ

m for some j ∈ {0, 1, . . . , 2m− 1}, then, by (7.38) (see Remark
7.1.5), u0(x) = Tm(x) +O(|x|m+1) and ∂u0

∂x2
(x) = ∂Tm

∂x2
(x) +O(|x|m) as x → 0, so that

Lε(u0) = 2
∫

Sε

∂Tm

∂x2
Tm dS +O(ε2m+1) = O(ε2m+1) as ε → 0+ (7.184)
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since, in this case, either Tm

∣∣
Sε

≡ 0 or ∂Tm
∂x2

∣∣
Sε

≡ 0.
From Theorem 7.1.1, (7.184), (7.179), and (7.180), it follows that

λε,n0 −λ0,n0 = 2Eε−2Lε(u0)+o
(
Lε(u0)

)
+o
(
∥Vε∥2

Hε

)
= 2Eε,Tm,Ω+o(ε2m) as ε → 0+. (7.185)

Theorem 7.1.6 follows from (7.185) and (7.175), while Theorem 7.1.7 is a consequence of
(7.185) and (7.176).

Remark 7.6.7. The case m = 0 has been omitted in the present section as, for u0(0) ̸= 0
the sharp expansion is already contained in [5] even without symmetry assumptions on the
domain; however, the above argument could also apply in such a case, providing an alternative
proof of the result of [5].

7.7 Dealing with more general configurations of poles
In this section, we give a hint on how our approach could be extended to treat other possible
configurations of poles, which are not covered in detail for the sake of simplicity of exposition.
By 7.1.1, the quantity that sharply measures the eigenvalue variation is Eε −Lε(v0), where Eε

is as in (7.19), Lε as in (7.16) and v0 is the limit eigenfunction after a gauge transformation,
thus solving (7.14). As explained in the introduction, Eε is essentially an intermediate quantity
between a capacity and a torsional rigidity, measuring the set ∪k1+k2

j=1 Sj
ε . For the success of

our method it is important that the limit eigenfunction v0 is regular on the sets Sj
ε , while

the perturbed eigenfunction vε jumps on them, together with ∇vε · νj . Our approach can be
applied to all configurations of poles for which, after a gauge transformation as in 7.2.3, the
origin belongs to the half-lines on which the perturbed eigenfunction vε jumps.

We provide below some examples. Since the gauge transformation for a configuration of
poles is the composition of the gauge transformations of the families of poles lying on the same
straight line, we now focus on a single set of k collinear poles. Hence, for sake of simplicity,
we assume

{aj}j=1,...,k ⊂ BR(0) ∩ {(x1, 0) : x1 ∈ R} ⊂ Ω.

More precisely, we assume that k = n1+n2, where n1, n2 ∈ N denote, respectively, the number
of poles which lie on the left and on the right side with respect to the origin (either n1 or n2
might be zero). Namely,

aj =
{

(−δj , 0), for j = 1, . . . , n1,

(δj , 0), for j = n1 + 1, . . . , n1 + n2,

where δj > 0 are such that

−δ1 < −δ2 < · · · < −δn1 < 0 < δn1+1 < · · · < δn1+n2 .

For the above configuration, we consider problem (1.9). One of the following cases occurs:

(i) n1 and n2 are both even;

(ii) n1 and n2 are both odd;

(iii) n1 is odd and n2 is even (or vice versa).
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The procedure developed to prove our main result 7.1.1 can be reproduced in cases (i) and
(ii), as well as in case (iii) if n2 = 0.

Let us now briefly describe, in these cases, how problem (1.9) becomes after a tailored
gauge transformation. Hereafter, we denote by Σ := R×{0} the x1 axis, by T : H1(R2 \Σ) →
Lp(Σ) the jump trace operator defined as in (7.4) with Σ instead of Σj , and by ν := (0, 1).

Case (i): even number of poles evenly distributed, i.e. n1 = 2N and n2 = 2M for some
N,M ∈ N (see 7.8a). In this case, reasoning as in 7.2.3, it is possible to find a gauge
transformation such that problem (1.9) is equivalent to

−∆v = λv, in Ω \
⋃N+M

j=1 Sj
ε ,

v = 0, on ∂Ω,
T (v) = T (∇v · ν) = 0, on

⋃N+M
j=1 Sj

ε ,

where

Sj
ε :=

{
[−εδ2j−1,−εδ2j ] × {0}, if j = 1, . . . , N,
[εδ2j−1, εδ2j ] × {0}, if j = N + 1, . . . , N +M.

Case (ii): even number of poles oddly distributed, i.e. n1 = 2N + 1 and n2 = 2M + 1
for some N,M ∈ N (see 7.8b). Once again, reasoning as in (7.2.3), one can find a gauge
transformation such that problem (1.9) is equivalent to

−∆v = λv, in Ω \
⋃N+M+1

j=1 Sj
ε ,

v = 0, on ∂Ω,
T (v) = T (∇v · ν) = 0, on

⋃N+M+1
j=1 Sj

ε ,

where

Sj
ε :=


[−εδ2j−1,−εδ2j ] × {0}, for j = 1, . . . , N,
[−εδ2N+1, εδ2N+2] × {0}, for j = N + 1,
[εδ2j−1, εδ2j ] × {0}, for j = N + 2, . . . , N +M + 1.

(iii): odd number of poles all on the same side, i.e. n1 = 2N + 1 and n2 = 0 (see 7.8c). In
this case, problem (1.9) is equivalent to

−∆v = λv, in Ω \
[
Γ0 ∪

(⋃N+1
j=1 Sj

ε

)]
,

v = 0, on ∂Ω,
T (v) = T (∇v · ν) = 0, on Γ0,

T (v) = T (∇v · ν) = 0, on
⋃N+1

j=1 Sj
ε ,

where

Sj
ε :=

{
[−εδ2j−1,−εδ2j ] × {0}, for j = 1, . . . , N,
[−εδ2N+1, 0] × {0}, for j = N + 1.

To conclude, the only case left open is case (iii) with n2 ̸= 0. This requires non-trivial
technical adaptations and will be the object of future investigation.
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· · ·
a1
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a2
ε
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ε
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ε

· · · a2N+2M
ε
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ε
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ε

a2N+1
ε

0

(a) Case (i)

· · ·
0a1

ε

a2
ε

a2N−1
ε

a2N
ε

a2N+1
ε

a2N+2
ε

· · · a2N+2M+2
ε

a2N+2M+1
ε

a2N+4
ε

a2N+3
ε

(b) Case (ii)

· · ·
0

a1
ε

a2
ε

a2N−1
ε

a2N
ε

a2N+1
ε

(c) Case (iii) with n2 = 0

Figure 7.8: The jumping set after gauge transformation in cases (i), (ii), and (iii).
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